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Abstract—Wireless indoor positioning systems have become very
popular in recent years. These systems have been successfully used
in many applications such as asset tracking and inventory man-
agement. This paper provides an overview of the existing wireless
indoor positioning solutions and attempts to classify different tech-
niques and systems. Three typical location estimation schemes of
triangulation, scene analysis, and proximity are analyzed. We also
discuss location fingerprinting in detail since it is used in most cur-
rent system or solutions. We then examine a set of properties by
which location systems are evaluated, and apply this evaluation
method to survey a number of existing systems. Comprehensive
performance comparisons including accuracy, precision, complex-
ity, scalability, robustness, and cost are presented.

Index Terms—Indoor location sensing, location fingerprinting,
positioning algorithm, radio frequency (RF), wireless localization.

I. INTRODUCTION

INDOOR location sensing systems have become very pop-
ular in recent years. These systems provide a new layer of

automation called automatic object location detection. Real-
world applications depending on such automation are many. To
name a few, one can consider the location detection of products
stored in a warehouse, location detection of medical personnel
or equipment in a hospital, location detection of firemen in a
building on fire, detecting the location of police dogs trained to
find explosives in a building, and finding tagged maintenance
tools and equipment scattered all over a plant.

The primary progress in indoor location sensing systems has
been made during the last ten years. Therefore, both the research
and commercial products in this area are new, and many people
in academia and industry are currently involved in the research
and development of these systems. This survey paper aims to
provide the reader with a comprehensive review of the wireless
location sensing systems for indoor applications. When possi-
ble, the paper compares the related techniques and systems. The
authors hope that this paper will act as a guide for researchers,
users, and developers of these systems, and help them iden-
tify the potential research problems and future products in this
emerging area.
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An astonishing growth of wireless systems has been wit-
nessed in recent years. Wireless technologies have entered the
realms of consumer applications, as well as medical, industrial,
public safety, logistics, and transport system along with many
other applications. Self-organizing sensor networks, location
sensitive billing, ubiquitous computing, context-dependent in-
formation services, tracking, and guiding are some of the nu-
merous possible application areas. Since wireless information
access is now widely available, there is a high demand for ac-
curate positioning in wireless networks, including indoor and
outdoor environments [1], [2]. The process of determining a lo-
cation is called location sensing, geolocation, position location,
or radiolocation, if it uses wireless technologies.

Different applications may require different types of loca-
tion information. The main types discussed in this paper are
physical location, symbolic location, absolute location, and rel-
ative location [1]. Physical location is expressed in the form of
coordinates, which identify a point on a 2-D/3-D map. The
widely used coordinate systems are degree/minutes/seconds
(DMS), degree decimal minutes, and universal transverse mer-
cator (UTM) system. Symbolic location expresses a location in
a natural-language way, such as in the office, in the third-floor
bedroom, etc. Absolute location uses a shared reference grid for
all located objects. A relative location depends on its own frame
of reference. Relative location information is usually based on
the proximity to known reference points or base stations.

Various wireless technologies are used for wireless indoor
location. These may be classified based on: 1) the location po-
sitioning algorithm, i.e., the method of determining location,
making use of various types of measurement of the signal such
as Time Of Flight (TOF), angle, and signal strength; 2) the
physical layer or location sensor infrastructure, i.e., the wireless
technology used to communicate with the mobile devices or
static devices. In general, measurement involves the transmis-
sion and reception of signals between hardware components of
the system. An indoor wireless positioning system consists of
at least two separate hardware components: a signal transmitter
and a measuring unit. The latter usually carries the major part
of the system “intelligence.”

There are four different system topologies for positioning sys-
tems [3]. The first one is the remote positioning system, whose
signal transmitter is mobile and several fixed measuring units
receive the transmitter’s signal. The results from all measuring
units are collected, and the location of the transmitter is com-
puted in a master station. The second is self-positioning in which
the measuring unit is mobile. This unit receives the signals of
several transmitters in known locations, and has the capability to
compute its location based on the measured signals. If a wireless
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data link is provided in a positioning system, it is possible to
send the measurement result from a self-positioning measuring
unit to the remote side, and this is called indirect remote posi-
tioning, which is the third system topology. If the measurement
result is sent from a remote positioning side to a mobile unit via
a wireless data link, this case is named indirect self-positioning,
which is the fourth system topology.

Our paper is different from the previous survey papers [1]
and [2] in several ways. Comparing with the previous survey
paper [1], our paper focuses on indoor application of wireless
location positioning while [1] just generally describes the lo-
cation systems for ubiquitous computing, without addressing
different types of location algorithms, especially for wireless
location methods. Also, the paper [2] presents a slight out-of-
date overview of the technologies for wireless indoor location
solutions, and does not offer much detail about them and per-
formance benchmarking for indoor wireless positioning system.
The publication date of this paper is 2002, and since then, sev-
eral wireless indoor positioning systems or solutions have been
developed. In this paper, we present the latest developed systems
or solutions, and their location algorithms. Our main purpose is
to provide a qualitative overview for them. When possible, we
also offer a quantitive comparison of these systems or solutions.

This review paper is organized as follows. Section II shows
the measuring principles for location sensing and the position-
ing algorithms corresponding to different measuring principles.
Performance metrics for indoor positioning techniques are ex-
plained in Section III. Section IV presents current wireless in-
door positioning systems and solutions, and their performance
comparison. Finally, Section V concludes the paper and gives
possible future directions for research on wireless positioning
systems for indoor environments.

II. MEASURING PRINCIPLES AND POSITIONING ALGORITHMS

It is not easy to model the radio propagation in the indoor
environment because of severe multipath, low probability for
availability of line-of-sight (LOS) path, and specific site param-
eters such as floor layout, moving objects, and numerous reflect-
ing surfaces. There is no good model for indoor radio multipath
characteristic so far [2]. Except using traditional triangulation,
positioning algorithms using scene analysis or proximity are
developed to mitigate the measurement errors. Targeting differ-
ent applications or services, these three algorithms have unique
advantages and disadvantages. Hence, using more than one type
of positioning algorithms at the same time could get better
performance.

A. Triangulation

Triangulation uses the geometric properties of triangles to
estimate the target location. It has two derivations: lateration
and angulation. Lateration estimates the position of an object
by measuring its distances from multiple reference points. So, it
is also called range measurement techniques. Instead of measur-
ing the distance directly using received signal strengths (RSS),
time of arrival (TOA) or time difference of arrival (TDOA) is
usually measured, and the distance is derived by computing the

Fig. 1. Positioning based on TOA/RTOF measurements.

attenuation of the emitted signal strength or by multiplying the
radio signal velocity and the travel time. Roundtrip time of flight
(RTOF) or received signal phase method is also used for range
estimation in some systems. Angulation locates an object by
computing angles relative to multiple reference points. In this
survey, we focus on the aforementioned measurements in the
shorter range, low-antenna, and indoor environment.

1) Lateration Techniques:
a) TOA: The distance from the mobile target to the mea-

suring unit is directly proportional to the propagation time. In
order to enable 2-D positioning, TOA measurements must be
made with respect to signals from at least three reference points,
as shown in Fig. 1 [4]. For TOA-based systems, the one-way
propagation time is measured, and the distance between mea-
suring unit and signal transmitter is calculated. In general, direct
TOA results in two problems. First, all transmitters and receivers
in the system have to be precisely synchronized. Second, a times-
tamp must be labeled in the transmitting signal in order for the
measuring unit to discern the distance the signal has traveled.
TOA can be measured using different signaling techniques such
as direct sequence spread-spectrum (DSSS) [22], [23] or ultra-
wide band (UWB) measurements [78].

A straightforward approach uses a geometric method to com-
pute the intersection points of the circles of TOA. The position
of the target can also be computed by minimizing the sum of
squares of a nonlinear cost function, i.e., least-squares algo-
rithm [4], [5]. It assumes that the mobile terminal, located at
(x0, y0), transmits a signal at time t0, the N base stations lo-
cated at (x1, y1), (x2, y2), . . . ,(xN , yN ) receive the signal at time
t1, t2, . . . , tN . As a performance measure, the cost function can
be formed by

F (x) =
N∑

i=1

α2
i f

2
i (x) (1)

where αi can be chosen to reflect the reliability of the signal
received at the measuring unit i, and fi(x) is given as follows.

fi(x) = c(ti − t) −
√

(xi − x)2 + (yi − y)2 (2)

where c is the speed of light, and x = (x, y, t)T . This function is
formed for each measuring unit, i = 1, . . . , N, and fi(x) could
be made zero with the proper choice of x, y, and t. The location
estimate is determined by minimizing the function F (x).

There are other algorithms for TOA-based indoor location
system such as closest-neighbor (CN) and residual weighting
(RWGH) [5]. The CN algorithm estimates the location of the
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Fig. 2. Positioning based on TDOA measurements.

user as the location of the base station or reference point that
is located closest to that user. The RWGH algorithm can be
basically viewed as a form of weighted least-squares algorithm.
It is suitable for LOS, non-LOS (NLOS) and mixed LOS/NLOS
channel conditions.

b) TDOA: The idea of TDOA is to determine the relative
position of the mobile transmitter by examining the difference
in time at which the signal arrives at multiple measuring units,
rather than the absolute arrival time of TOA. For each TDOA
measurement, the transmitter must lie on a hyperboloid with a
constant range difference between the two measuring units. The
equation of the hyperboloid is given by

Ri,j =
√

(xi − x)2 + (yi − y)2 + (zi − z)2

−
√

(xj − x)2 + (yj − y)2 + (zj − z)2 (3)

where (xi, yi , zi) and (xj , yj , zj ) represent the fixed receivers
i and j; and (x, y, z) represent the coordinate of the target [3].
Except the exact solutions to the hyperbolic TDOA equation
shown in (3) through nonlinear regression, an easier solution
is to linearize the equations through the use of a Taylor-series
expansion and create an iterative algorithm [6].

A 2-D target location can be estimated from the two intersec-
tions of two or more TDOA measurements, as shown in Fig. 2.
Two hyperbolas are formed from TDOA measurements at three
fixed measuring units (A, B, and C) to provide an intersection
point, which locates the target P.

The conventional methods for computing TDOA estimates
are to use correlation techniques. TDOA can be estimated from
the cross correlation between the signals received at a pair of
measuring units. Suppose that for the transmitted signal s(t), the
received signal at measuring unit i is xi(t). Assume that xi(t)
is corrupted by the noise ni(t) and delayed by di , then xi(t) =
s(t − di) + ni(t). Similarly, the signal xj (t) = s(t − dj )+
nj (t), which arrives at measuring unit j, is delayed by dj and
corrupted by the noise nj (t). The cross-correlation function
of these signals is given by integrating the lag product of two

Fig. 3. Positioning based on RSS, where LS1, LS2, and LS3 denote the
measured path loss.

received signals over a time period T

R̂xi ,xj
(τ) =

1
T

∫ T

0

xi(t)xj (t − τ)dt. (4)

The TDOA estimate is the value τ that maximizes Rxi ,xj
(τ),

i.e., the range differences. This approach requires that the mea-
suring units share a precise time reference and reference sig-
nals, but does not impose any requirement on the mobile tar-
get. Frequency domain processing techniques are usually used
to calculate τ . Except the previous TDOA methods, a delay
measurement-based TDOA measuring method was proposed
in [23] for 802. 11 wireless LANs, which eliminates the require-
ment of initial synchronization in the conventional methods.

c) RSS-Based (or Signal Attenuation-Based) Method:
The above two schemes have some drawbacks. For indoor en-
vironments, it is difficult to find a LOS channel between the
transmitter and the receiver. Radio propagation in such environ-
ments would suffer from multipath effect. The time and angle of
an arrival signal would be affected by the multipath effect; thus,
the accuracy of estimated location could be decreased. An al-
ternative approach is to estimate the distance of the mobile unit
from some set of measuring units, using the attenuation of emit-
ted signal strength. Signal attenuation-based methods attempt
to calculate the signal path loss due to propagation. Theoret-
ical and empirical models are used to translate the difference
between the transmitted signal strength and the received signal
strength into a range estimate, as shown in Fig. 3.

Due to severe multipath fading and shadowing present in
the indoor environment, path-loss models do not always hold.
The parameters employed in these models are site-specific. The
accuracy of this method can be improved by utilizing the pre-
measured RSS contours centered at the receiver [7] or multiple
measurements at several base stations. A fuzzy logic algorithm
shown in [8] is able to significantly improve the location accu-
racy using RSS measurement.

d) RTOF: This method is to measure the time-of-flight of
the signal traveling from the transmitter to the measuring unit
and back, called the RTOF (see Fig. 1). For RTOF, a more mod-
erate relative clock synchronization requirement replaces the
above synchronization requirement in TOA. Its range measure-
ment mechanism is the same as that of the TOA. The measuring
unit is considered as a common radar. A target transponder
responds to the interrogating radar signal, and the complete
roundtrip propagation time is measured by the measuring units.
However, it is still difficult for the measuring unit to know the
exact delay/processing time caused by the responder in this
case. In long-range or medium-range systems, this delay could
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Fig. 4. Positioning based on signal phase.

Fig. 5. Positioning based on AOA measurement.

be ignored if it is small, compared with the transmission time.
However, for short-range systems, it cannot be ignored. An alter-
native approach is to use the concept of modulated reflection [9],
which is only suited for short-range systems. An algorithm to
measure RTOF of wireless LAN packets is presented in [10]
with the result of a measurement error of a few meters. The
positioning algorithms for TOA can be directly applicable for
RTOF.

e) Received Signal Phase Method: The received signal
phase method uses the carrier phase (or phase difference) to
estimate the range. This method is also called phase of arrival
(POA) [2]. Assuming that all transmitting stations emit pure
sinusoidal signals that are of the same frequency f , with zero
phase offset, in order to determine the phases of signals re-
ceived at a target point, the signal transmitted from each trans-
mitter to the receiver needs a finite transit delay. In Fig. 4, the
transmitter stations A up to D are placed at particular locations
within an imaginary cubic building. The delay is expressed as
a fraction of the signal’s wavelength, and is denoted with the
symbol φi = (2πfDi)/c in equation Si(t) = sin(2πft + φi),
where i ∈ (A,B,C,D), and c is the speed of light. As long
as the transmitted signal’s wavelength is longer than the di-
agonal of the cubic building, i.e., 0 < φi < 2π, we can get the
range estimation Di = (cφi)/(2πf). Then, we can use the same
positioning algorithms using TOA measurement. The receiver
may measure phase differences between two signals transmit-
ted by pairs of stations, and positioning systems are able to
adopt the algorithms using TDOA measurement to locate the
target.

For an indoor positioning system, it is possible to use
the signal phase method together with TOA/TDOA or RSS
method to fine-tune the location positioning. However, the re-
ceived signal phase method has one problem of ambiguous car-
rier phase measurements to overcome. It needs an LOS sig-
nal path, otherwise it will cause more errors for the indoor
environment.

2) Angulation Techniques (AOA Estimation): In AOA, the
location of the desired target can be found by the intersection of
several pairs of angle direction lines, each formed by the circular
radius from a base station or a beacon station to the mobile target.
As shown in Fig. 5, AOA methods may use at least two known
reference points (A, B), and two measured angles θ1, θ2 to derive
the 2-D location of the target P . Estimation of AOA, commonly
referred to as direction finding (DF), can be accomplished either
with directional antennae or with an array of antennae.

The advantages of AOA are that a position estimate may be
determined with as few as three measuring units for 3-D po-
sitioning or two measuring units for 2-D positioning, and that
no time synchronization between measuring units is required.
The disadvantages include relatively large and complex hard-
ware requirement(s), and location estimate degradation as the
mobile target moves farther from the measuring units. For ac-
curate positioning, the angle measurements need to be accurate,
but the high accuracy measurements in wireless networks may
be limited by shadowing, by multipath reflections arriving from
misleading directions, or by the directivity of the measuring
aperture. Some literatures also call AOA as direction of arrival
(DOA). For more detailed discussions on AOA estimation algo-
rithms and their properties, see [11]–[13].

B. Scene Analysis

RF-based scene analysis refers to the type of algorithms that
first collect features (fingerprints) of a scene and then estimate
the location of an object by matching online measurements with
the closest a priori location fingerprints. RSS-based location
fingerprinting is commonly used in scene analysis.

Location fingerprinting refers to techniques that match the
fingerprint of some characteristic of a signal that is location
dependent. There are two stages for location fingerprinting:
offline stage and online stage (or run-time stage). During the
offline stage, a site survey is performed in an environment. The
location coordinates/labels and respective signal strengths from
nearby base stations/measuring units are collected. During the
online stage, a location positioning technique uses the currently
observed signal strengths and previously collected information
to figure out an estimated location. The main challenge to the
techniques based on location fingerprinting is that the received
signal strength could be affected by diffraction, reflection, and
scattering in the propagation indoor environments.

There are at least five location fingerprinting-based position-
ing algorithms using pattern recognition technique so far: prob-
abilistic methods, k-nearest-neighbor (kNN), neural networks,
support vector machine (SVM), and smallest M-vertex polygon
(SMP).

1) Probabilistic Methods: One method considers position-
ing as a classification problem. Assuming that there are n loca-
tion candidates L1, L2, L3 , . . . , Ln , and s is the observed signal
strength vector during the online stage, the following decision
rule can be obtained:

Choose Li if P (Li |s) > P (Lj |s),
for i, j = 1, 2, 3, . . . , n, j �= i.
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Here, P (Li |s) denotes the probability that the mobile node
is in location Li , given that the received signal vector is s. Also
assume that P (Li) is the probability that the mobile node is
in location Li . The given decision rule is based on posteriori
probability. Using Bayes’ formula, and assuming that P (Li) =
P (Lj ) for i, j = 1, 2, 3, . . . , n we have the following decision
rule based on the likelihood that (P (s|Li) is the probability that
the signal vector s is received, given that the mobile node is
located in location Li)

Choose Li if P (s|Li) > P (s|Lj),

for i, j = 1, 2, 3, . . . , n, j �= i.

In addition to the histogram approach, kernel approach is
used in calculating likelihood. Assuming that the likelihood of
each location candidate is a Gaussian distribution, the mean and
standard deviation of each location candidate can be calculated.
If the measuring units in the environment are independent, we
can calculate the overall likelihood of one location candidate
by directly multiplying the likelihoods of all measuring units.
Therefore, the likelihood of each location candidate can be cal-
culated from observed signal strengths during the online stage,
and the estimated location is to be decided by the previous deci-
sion rule. However, this is applicable only for discrete location
candidates. Mobile units could be located at any position, not
just at the discrete points. The estimated 2-D location (x̂, ŷ)
given by (5) may interpolate the position coordinates and give
more accurate results. It is a weighted average of the coordinates
of all sampling locations

(x̂, ŷ) =
n∑

i=1

(P(Li|s)(xLi
, yLi

)) . (5)

Other probabilistic modeling techniques for location-aware
and location-sensitive applications in wireless networks may
involve pragmatically important issues like calibration, ac-
tive learning, error estimation, and tracking with history. So
Bayesian-network-based and/or tracking-assisted positioning
has been proposed [48].

2) kNN: The kNN averaging uses the online RSS to search
for k closest matches of known locations in signal space from
the previously-built database according to root mean square
errors principle. By averaging these k location candidates with
or without adopting the distances in signal space as weights, an
estimated location is obtained via weighted kNN or unweighted
kNN. In this approach, k is the parameter adapted for better
performance.

3) Neural Networks: During the offline stage, RSS and the
corresponding location coordinates are adopted as the inputs
and the targets for the training purpose. After training of neural
networks, appropriate weights are obtained. Usually, a multi-
layer perceptron (MLP) network with one hidden layer is used
for neural-networks-based positioning system. The input vector
of signal strengths is multiplied by the trained input weight ma-
trix, and then added with input layer bias if bias is chosen. The
result is put into the transfer function of the hidden layer neuron.
The output of this transfer function is multiplied by the trained
hidden layer weight matrix, and then added to the hidden layer

bias if it is chosen. The output of the system is a two-element
vector or a three-elements vector, which means the 2-D or 3-D
of the estimated location.

4) SVM: SVM is a new and promising technique for data
classification and regression. It is a tool for statistical analysis
and machine learning, and it performs very well in many classifi-
cation and regression applications. SVMs have been used exten-
sively for a wide range of applications in science, medicine, and
engineering with excellent empirical performance [15], [16].
The theory of SVM is found in [17] and [18]. Support vec-
tor classification (SVC) of multiple classes and support vector
regression (SVR) have been used successfully in location fin-
gerprinting [19], [20].

5) SMP: SMP uses the online RSS values to search for can-
didate locations in signal space with respect to each signal trans-
mitter separately. M-vertex polygons are formed by choosing at
least one candidate from each transmitter (suppose total of M
transmitters). Averaging the coordinates of vertices of the small-
est polygon (which has the shortest perimeter) gives the location
estimate. SMP has been used in MultiLoc [74].

C. Proximity

Proximity algorithms provide symbolic relative location in-
formation. Usually, it relies upon a dense grid of antennas, each
having a well-known position. When a mobile target is de-
tected by a single antenna, it is considered to be collocated with
it. When more than one antenna detects the mobile target, it
is considered to be collocated with the one that receives the
strongest signal. This method is relatively simple to implement.
It can be implemented over different types of physical media.
In particular, the systems using infrared radiation (IR) and radio
frequency identification (RFID) are often based on this method.
Another example is the cell identification (Cell-ID) or cell of
origin (COO) method. This method relies on the fact that mo-
bile cellular networks can identify the approximate position of
a mobile handset by knowing which cell site the device is using
at a given time. The main benefit of Cell-ID is that it is already
in use today and can be supported by all mobile handsets.

III. PERFORMANCE METRICS

It is not enough to measure the performance of a positioning
technique only by observing its accuracy. Referring to [21] and
considering the difference between the indoor and outdoor wire-
less geolocation, we provide the following performance bench-
marking for indoor wireless location system: accuracy, preci-
sion, complexity, scalability, robustness, and cost. Thereafter,
we make a comparison among different systems and solutions
in Section IV.

A. Accuracy

Accuracy (or location error) is the most important require-
ment of positioning systems. Usually, mean distance error
is adopted as the performance metric, which is the average
Euclidean distance between the estimated location and the true
location. Accuracy can be considered to be a potential bias, or
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systematic effect/offset of a positioning system. The higher the
accuracy, the better the system; however, there is often a tradeoff
between accuracy and other characteristics. Some compromise
between “suitable” accuracy and other characteristics is needed.

B. Precision

Accuracy only considers the value of mean distance errors.
However, location precision considers how consistently the sys-
tem works, i.e., it is a measure of the robustness of the posi-
tioning technique as it reveals the variation in its performance
over many trials. We also notice that some literatures define the
location precision as the standard deviation in the location error
or the geometric dilution of precision (GDOP), but we prefer
it as the distribution of distance error between the estimated
location and the true location.

Usually, the cumulative probability functions (CDF) of the
distance error is used for measuring the precision of a system.
When two positioning techniques are compared, if their accu-
racies are the same, we prefer the system with the CDF graph,
which reaches high probability values faster, because its dis-
tance error is concentrated in small values. In practice, CDF is
described by the percentile format. For example, one system has
a location precision of 90% within 2.3 m (the CDF of distance
error of 2.3 m is 0.9), and 95% within 3.5 m; another one has a
precision of 50% within 2.3 m and 95% within 3.3 m. We could
choose the former system because of its higher precision.

C. Complexity

Complexity of a positioning system can be attributed to hard-
ware, software, and operation factors. In this paper, we em-
phasize on software complexity, i.e., computing complexity of
the positioning algorithm. If the computation of the positioning
algorithm is performed on a centralized server side, the position-
ing could be calculated quickly due to the powerful processing
capability and the sufficient power supply. If it is carried out on
the mobile unit side, the effects of complexity could be evident.
Most of the mobile units lack strong processing power and long
battery life; so, we would prefer positioning algorithms with
low complexity. Usually, it is difficult to derive the analytic
complexity formula of different positioning techniques; thus,
the computing time is considered. Location rate is an important
indicator for complexity. The dual of location rate is location
lag, which is the delay between a mobile target moving to a
new location and reporting the new location of that target by the
system.

D. Robustness

A positioning technique with high robustness could function
normally even when some signals are not available, or when
some of the RSS value or angle character are never seen before.
Sometimes, the signal from a transmitter unit is totally blocked,
so the signal cannot be obtained from some measuring units.
The only information to estimate the location is the signal from
other measuring units. Sometimes, some measuring units could
be out of function or damaged in a harsh environment. The

positioning techniques have to use this incomplete information
to compute the location.

E. Scalability

The scalability character of a system ensures the normal po-
sitioning function when the positioning scope gets large. Usu-
ally, the positioning performance degrades when the distance
between the transmitter and receiver increases. A location sys-
tem may need to scale on two axes: geography and density.
Geographic scale means that the area or volume is covered.
Density means the number of units located per unit geographic
area/space per time period. As more area/space is covered or
units are crowded in an area/space, wireless signal channels
may become congested, more calculation may be needed to
perform location positioning, or more communication infras-
tructure may be required. Another measure of scalability is the
dimensional space of the system. The current system can locate
the objects in 2-D or 3-D space. Some systems can support both
2-D and 3-D spaces.

F. Cost

The cost of a positioning system may depend on many factors.
Important factors include money, time, space, weight, and en-
ergy. The time factor is related to installation and maintenance.
Mobile units may have tight space and weight constraints. Mea-
suring unit density is considered to be a space cost. Sometimes,
we have to consider some sunk costs. For example, a position-
ing system layered over a wireless network may be considered
to have no hardware cost if all the necessary units of that net-
work have already been purchased for other purposes. Energy
is an important cost factor of a system. Some mobile units (e.g.,
electronic article surveillance (EAS) tags and passive RFID
tags, which are addressed later) are completely energy passive.
These units only respond to external fields and, thus, could have
an unlimited lifetime. Other mobile units (e.g., devices with
rechargeable battery) have a lifetime of several hours without
recharging.

IV. SURVEY OF SYSTEMS AND SOLUTIONS

Having identified the common measuring principles, the po-
sitioning algorithms and the important performance metrics of
location positioning systems, we are able to discuss specific sys-
tems. There are two basic approaches to designing a wireless
geolocation system. The first approach is to develop a signal-
ing system and a network infrastructure of location measuring
units focused primarily on wireless location application. The
second approach is to use an existing wireless network infras-
tructure to locate a target. The advantage of the first approach
is that the designers are able to control physical specification
and, consequently, the quality of the location sensing results.
The tag with the target can be designed as a very small wearable
tag or sticker, and the density of the sensor can be adjusted to
the required positioning accuracy. The advantage of the second
approach is that it avoids expensive and time-consuming de-
ployment of infrastructure. These systems, however, may need
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Fig. 6. Outline of current wireless-based positioning systems.

to use more intelligent algorithms to compensate for the low
accuracy of the measured metrics. Several types of wireless
technologies are used for indoor location. Fig. 6 depicts a rough
outline of the current wireless-based positioning systems, which
is a modified version of [24, Fig. 2]. It is beyond the scope of this
paper to provide a complete overview of systems available till
now. We focus on the wireless positioning systems primarily for
indoor situations. There are some classification approaches to
surveying the indoor positioning system, such as application en-
vironments (such as 2-D/3-D positioning in office, warehouse,
etc.), positioning algorithms, and wireless technologies. In this
paper, we adopt the wireless technologies scheme, also address-
ing their positioning algorithms and their application situation.

A. GPS-Based

Global positioning system (GPS), or its differential comple-
ment DGPS [25], is one of the most successful positioning
systems in outdoor environments. However, poor coverage of
satellite signal for indoor environments decreases its accuracy
and makes it unsuitable for indoor location estimation.

SnapTrack,1 a Qualcomm Company, pioneered wireless as-
sisted GPS (A-GPS) to overcome the limitations of conventional
GPS, and provide GPS indoors technique with an average of
5–50 m accuracy in most indoor environments. A-GPS technol-
ogy uses a location server with a reference GPS receiver that can
simultaneously detect the same satellites as the wireless handset
(or mobile station) with a partial GPS receiver, to help the par-
tial GPS receiver find weak GPS signals. The wireless handset
collects measurements from both the GPS constellation and the
wireless mobile network. These measurements are combined by
the location server to produce a position estimation.

Recently, Atmel2 and U-blox3 announced the availability of a
new GPS weak signal tracking technology, called SuperSense.
With this new GPS software, GPS navigation becomes possible
in building interiors and deep urban canyons because of its

1SnapTrack. http://www.snaptrack. com/
2Atmel Corporation. http://www.atmel. com/
3U-blox AG. http://www.u-blox. com

tracking sensitivity beyond −158 dBm4 . Its performance is not
reported so far.

Locata Corporation has invented a new positioning tech-
nology called Locata [26], for precision positioning both in-
doors and outside. Part of the “Locata technology” consists of a
time-synchronized pseudolite transceiver called a LocataLite. A
network of LocataLites forms a LocataNet, which transmits
GPS-like signals that allow single-point positioning using
carrier-phase measurements for a mobile device (a Locata). The
Satellite Navigation And Positioning (SNAP) Group at the Uni-
versity of New South Wales has assisted in the development of a
Locata and testing of the new technology. The test experiments
demonstrate proof-of-concept for the “Locata technology,” and
show that carrier-phase point positioning (without radio modem
data links) is possible with subcentimeter precision [26].

B. RFID

RFID is a means of storing and retrieving data through elec-
tromagnetic transmission to an RF compatible integrated circuit
and is now being seen as a means of enhancing data handling
processes [27]. An RFID system has several basic components,
including a number of RFID readers, RFID tags, and the com-
munication between them. The RFID reader is able to read the
data emitted from RFID tags. RFID readers and tags use a de-
fined RF and protocol to transmit and receive data. RFID tags
are categorized as either passive or active.

Passive RFID tags operate without a battery. They are mainly
used to replace the traditional barcode technology and are much
lighter, smaller in volume, and less expensive than active tags.
They reflect the RF signal transmitted to them from a reader and
add information by modulating the reflected signal. However,
their ranges are very limited. The typical reading range is 1–2 m,
and the cost of the readers is relatively high. Passive RFID sys-
tems usually make use of four frequency bands: LF (125 kHz),
HF (13.56 MHz), UHF (433, 868–915 MHz), and microwave
frequency (2.45 GHz, 5.8 GHz).20 Bewator5 is a known passive
RFID manufacturer.

Active RFID tags are small transceivers, which can actively
transmit their ID (or other additional data) in reply to an interro-
gation. Frequency ranges used are similar to the passive RFID
case except the low-frequency and high-frequency ranges. The
advantages of active RFID are with the smaller antennae and in
the much longer range (can be tens of meters). Active tags are
ideally suited for the identification of high-unit-value products
moving through a harsh assembly process. WaveTrend Tech-
nologies6 is one of the famous Active RFID manufacturers. A
well-known location sensing system using the RFID technol-
ogy is SpotON [28]. SpotON uses an aggregation algorithm for
3-D location sensing based on radio signal strength analysis.
SpotON researchers designed and built hardware that serves
as object location tags. In the SpotON approach, objects are
located by homogenous sensor nodes without central control,
i.e., Ad Hoc manner. SpotON tags use received RSS value as

4Atmel/U-blox. http://www.automotivedesignline.com/products/164901239
5Bewator Ltd. http://www.bewator.com/uk/
6WaveTrend Technologies Ltd. http://www.wavetrend. co.za/
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a sensor measurement for estimating inter-tag distance. They
exploit the density of tags and correlation of multiple measure-
ments to improve both accuracy and precision. Another system
is called LANDMARC (indoor location sensing using active
RFID) [29]. Its prototype uses the RFID reader’s operating fre-
quency with 308 MHz. In order to increase accuracy without
placing more readers, the system employs the idea of having
extra fixed location reference tags to help location calibration.
These reference tags serve as reference points in the system.
The LANDMARC approach requires signal strength informa-
tion from each tag to readers. The kNN method is adopted to
calculate the location of the RFID tags. It is reported that the 50
percentile has an error distance of around 1 m while the maxi-
mum error distances are less than 2 m for LANDMARC system.

C. Cellular-Based

A number of systems have used global system of mobile/code
division multiple access (GSM/CDMA) mobile cellular network
to estimate the location of outdoor mobile clients. However, the
accuracy of the method using cell-ID or enhanced observed time
difference (E-OTD) is generally low (in the range of 50–200 m),
depending on the cell size. Generally speaking, the accuracy is
higher in densely covered areas (e.g, urban places) and much
lower in rural environments [30].

Indoor positioning based on mobile cellular network is pos-
sible if the building is covered by several base stations or one
base station with strong RSS received by indoor mobile clients.
Otsasen et al. presented a GSM-based indoor localization sys-
tem in [31]. Their key idea that makes accurate GSM-based in-
door localization possible is the use of wide signal-strength fin-
gerprints. The wide fingerprint includes the six strongest GSM
cells and readings of up to 29 additional GSM channels, most of
which are strong enough to be detected but too weak to be used
for efficient communication. The higher dimensionality intro-
duced by the additional channel dramatically increases localiza-
tion accuracy. They present results for experiments conducted
on signal-strength fingerprints collected from three multifloor
buildings using weighted kNN technique. The results show that
their indoor localization system can differentiate between floors
and achieve median within-floor accuracy as low as 2.5 m. The
same method could be applied in IS-95 CDMA and 3G mobile
network.

D. UWB

UWB is based on sending ultrashort pulses (typically
<1 ns), with a low duty cycle (typically 1 : 1000). On the spec-
tral domain, the system, thus, uses an UWB (even >500 MHz
wide). UWB location has the following advantages [32]. Un-
like conventional RFID systems, which operate on single bands
of the radio spectrum, UWB transmits a signal over multiple
bands of frequencies simultaneously, from 3.1 to 10.6 GHz.
UWB signals are also transmitted for a much shorter duration
than those used in conventional RFID. UWB tags consume less
power than conventional RF tags and can operate across a broad
area of the radio spectrum. UWB can be used in close prox-
imity to other RF signals without causing or suffering from

interference because of the differences in signal types and radio
spectrum used. UWB short duration pulses are easy to filter in
order to determine which signals are correct and which are gen-
erated from multipath. At the same time, the signal passes easily
through walls, equipment and clothing. However metallic and
liquid materials cause UWB signal interference. Use of more
UWB readers and strategic placement of UWB readers could
overcome this disadvantage. Short-pulse waveforms permit an
accurate determination of the precise TOA and, namely, the pre-
cise TOF of a burst transmission from a short-pulse transmitter
to a corresponding receiver [33], [32]. UWB location exploits
the characteristics of time synchronization of UWB communi-
cation to achieve very high indoor location accuracy (20 cm).
So it is suitable for high-precision real-time 2-D and 3-D loca-
tion. 3-D location positioning can be performed by using two
different measuring means: TDOA, which is measuring the time
difference between a UWB pulse arriving at multiple sensors,
and AOA. The advantage of using both means in conjunction
is that a location can be determined from just two sensors de-
creasing the required sensor density over systems that just use
TDOA. More UWB knowledge and products are given in7 and
their related references.

To date, several UWB precision localization systems have
been fielded [34].8,9,10 The Ubisense system8 is a unidirectional
UWB location platform with a conventional bidirectional time
division multiple access (TDMA) control channel. The tags
transmit UWB signals to networked receivers and are located
using AOA and TDOA. Ubisense works by creating sensor cells.
Each cell requires at least four sensors or readers. Throughout
buildings or collections of buildings, an unlimited number of
readers can be networked together in a manner similar to cellular
phone networks. The readers receive data from the tags, from
as far as 150 ft, and send it through the Ubisense Smart Space
software platform.

Microwave frequency, covered by the UWB frequency band,
is used in Siemens local position radar (LPR) [24]. Siemens LPR
is an RTOF system, in which the RTOF between a transponder
unit and measuring units/base stations is measured via the fre-
quency modulated continuous wave (FMCW) radar principle. It
was launched for industrial applications like crane and forklift
positioning. It is applicable only for LOS environment.

E. WLAN (IEEE 802.11)

This midrange wireless local area network (WLAN) stan-
dard, operating in the 2.4-GHz Industrial, Scientific and Med-
ical (ISM) band, has become very popular in public hotspots
and enterprise locations during the last few years. With a typical
gross bit rate of 11, 54, or 108 Mbps and a range of 50–100 m,
IEEE 802.11 is currently the dominant local wireless network-
ing standard. It is, therefore, appealing to use an existing WLAN
infrastructure for indoor location as well, by adding a location

7Intel Corporation. http://www.intel.com/technology/comms/uwb/. And
Ultrawideband planet: http://www.ultrawidebandplanet.com

8UbiSense Company. http://www.ubisense.net
9Aether Wire & Location, Inc. http://www.aetherwire.com
10Time Domain Company. http://www.timedomain.com
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server. The accuracy of typical WLAN positioning systems us-
ing RSS is approximatly 3 to 30 m, with an update rate in the
range of few seconds.

Bahl et al. [35] proposed an in-building user location and
tracking system—RADAR, which adopts the nearest neigh-
bor(s) in signal-space technique, which is the same as the kNN.
The authors proposed two kinds of approaches to determine
the user location. The first one depends on the empirical mea-
surement of access point signal strength in offline phase. By
these experiments, it is reported that user orientations, number
of nearest neighbors used, number of data points, and num-
ber of samples in real-time phase would affect the accuracy of
location determination. The second one is signal propagation
modeling. Wall attenuation factor (WAF) and floor attenuation
factor (FAF) propagation model is used, instead of Rayleigh
fading model and Rician distribution model, which are used in
outdoor situation. WAF takes into consideration the number of
walls (obstructions). The accuracy of RADAR system is about
2–3 m. In their following work [36], RADAR was enhanced by
a Viterbi-like algorithm. Its result is that the 50 percentile of the
RADAR system is around 2.37–2.65 m and its 90 percentile is
around 5.93–5.97 m.

Horus system [37], [38] offered a joint clustering technique
for location estimation, which uses the probabilistic method
described previously. Each candidate location coordinate is re-
garded as a class or category. In order to minimize the distance
error, location Li is chosen while its likelihood is the highest.
The experiment results show that this technique can acquire
an accuracy of more than 90% to within 2.1 m. Increasing the
number of samples at each sampling location could improve
its accuracy because increasing the number of samples would
improve the estimation for means and standard deviations of
Gaussian distribution. Roos et al. [39] developed a grid-based
Bayesian location-sensing system over a small region of their
office building, achieving localization and tracking to within
1.5 m over 50% of the time. Nibble [40], one of the first sys-
tems of this generation, used a probabilistic approach (based on
Bayesian network) to estimate a device’s location.

In [41], Battiti et al. proposed a location determination
method by using neural-network-based classifier. They adopted
multilayer perceptron (MLP) architecture and one-step secant
(OSS) training method. They chose the three-layer architecture
with three input units, eight hidden layer units, and two out-
puts, since this architecture could acquire the lowest training
and testing error, and it is less sensitive to the “overfitting” ef-
fect. They reported that only five samples of signal strengths
in different locations are sufficient to get an average distance
error of 3 m. Increasing the number of training examples helps
decrease the average distance error to 1.5 m. The authors in [42]
compared the neural-networks-based classifier with the near-
est neighbor classifier and probabilistic method. It is reported
in [42] that neural networks give an error of 1 m with 72%
probability.

Wireless location-sensing is actually a specialized case of
a well-studied problem in mobile robotics, that of robot
localization—determining the position of a mobile robot given
inputs from the robot’s various sensors (possibly including GPS,

sonar, vision, and ultrasound sensors). Robot-based or tracking-
assisting wireless localization has been studied by many re-
searchers [43]. Ladd et al. [44], [45] propose a grid-based
Bayesian robot localization algorithm that uses the IEEE 802.11
infrastructure. In the first step of the algorithm, a host uses a
probabilistic model to compute the likelihood of its location for
a number of different locations, based on the RSS from nine
APs. The second step exploits the limited maximum speed of
mobile users to refine the results (of the first step) and reject
solutions with significant change in the location of the mo-
bile host. Depending on whether the second step is used or
not, 83% and 77% of the time, hosts can predict their loca-
tion within 1.5 m. Haeberlen et al. [46] presented a practical
robust Bayesian method for topological localization over the
entirety of an 802.11 network deployed within a multistorey
office building. They have shown that the use of a topologi-
cal model can dramatically reduce the time required to train
the localizer, while the resulting accuracy is still sufficient for
many location-aware applications. Siddiqi et al. [47] used Monte
Carlo localization technique, and obtained similar result to that
of [44]. Kontkanen et al. also introduced a tracking-assistant
positioning system [48]. This system was used to develop the
Ekahau system,11 a commercial wireless location-sensing sys-
tem that combines Bayesian networks, stochastic complexity
and online competitive learning, to provide positioning infor-
mation through a central location server. In [49], Xiang et al.
proposed a model-based signal propagation distribution training
scheme and a tracking-assistant positioning algorithm in which
a state machine is used to adaptively transfer between tracking
and nontracking status to achieve more accuracy. This system
is reported to achieve 2 m accuracy with 90% probability for
static position determination. For a walking mobile device, 5 m
accuracy with 90% probability is achieved.

While most systems based on WLAN are using signal
strength, AeroScout (formerly BlueSoft) [50] uses 802.11-based
TDOA location solution. It requires the same radio signal to be
received at three or more separate points, timed very accurately
(to a few nanoseconds) and processed using the TDOA algo-
rithm to determine the location.

There are several other location systems using WLAN [7],
[51]–[54]. For space limitations, we do not discuss their details
here.

F. Bluetooth (IEEE 802.15)

Bluetooth operates in the 2.4-GHz ISM band. Compared
to WLAN, the gross bit rate is lower (1 Mbps), and the range
is shorter (typically 10–15 m). On the other hand, Bluetooth
is a “lighter” standard, highly ubiquitous (embedded in most
phones, personal digital assistants (PDAs), etc.) and supports
several other networking services in addition to IP. Bluetooth
tags are small size transceivers. As any other Bluetooth device,
each tag has a unique ID. This ID can be used for locating the
Bluetooth tag. [74]. The BlueTags tag is a typical Bluetooth
tag.12

11Ekahau, Inc. Ekahau Positioning Engine 2.0. http://www.ekahau.com/
12Bluelon Company. www.bluetags. com
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The Topaz local positioning solution13is based on Tadlys’
Bluetooth infrastructure and accessory products. This modu-
lar positioning solution is made up of three types of elements:
positioning server(s), wireless access points, and wireless tags.
The system’s performance makes it suitable for tracking hu-
mans and assets. This system provides roomwise accuracy (or,
alternatively, 2-m spatial accuracy), with 95% reliability. The
positioning delay is 15–30 s. The performance is further en-
hanced in their new generation Topaz system that integrates
infrared and other transducers, with the Bluetooth positioning
and communication capabilities.

Antti et al. present the design and implementation of a Blue-
tooth Local Positioning Application (BLPA) [55]. First, they
convert the received signal power levels to distance estimates
according to a simple propagation model, and then, they use the
extended kalman filter (EKF) to compute 3-D position estimate
on the basis of distance estimates. The accuracy of BLPA is re-
ported to be 3.76 m. A similar work has been done by Hallberg
et al. [56].

G. Others

1) Proprietary Solutions Using Ultra High Frequency
(UHF): The UHF location systems operate, typically either at
the 433-MHz band (medical telemetry) or at the 868-MHz and
2.4-GHz ISM band. At such frequency ranges, walls have a
moderate attenuation.

Some proprietary solutions such as the 3-D-ID system from
PinPoint [57] or the TDOA system from WhereNet14 have sim-
ilar performance as the WLAN systems mentioned later. How-
ever, the specially designed hardware and a protocol with longer
power down periods allows for minimal power consumption in
the mobile. For example, WhereNet, a real-time locating sys-
tem (RTLS), uses the same 2.4 GHz band as the IEEE 802.11
and Bluetooth systems, but it uses a dedicated standard pro-
tocol (ANSI 371.1) optimized for low-power spread-spectrum
location. It works by timing the signals transmitted from tags
to a network of receivers. 3D-ID is a commercial location sys-
tem produced by PinPoint. Pinpoint uses RTOF to do ranging. It
uses an installed array of antennas at known positions to perform
multilateration. When a mobile tag receives a broadcast, the tag
immediately rebroadcasts it on a different frequency, modulated
with the tag’s identifier. A cell controller cycles through the an-
tennas, collecting a set of ranges to the tag. Using a 40 MHz
signal, this system achieves a 30-m range, 1-m precision, and
5-s location update rate.

Commercial indoor positioning systems using mesh network
techniques such as MeshNetwork positioning system (MPS)15

are also worth to mention. The MPS technology leverages the
patented position location and determination methods built into
MeshNetwork Quadrature Division Multiple Access (QDMA)
radio technology, which uses direct sequence spread spectrum
(DSSS) and operates in the ISM 2.4-GHz bands. It is reported

13Topaz local positioning solution. http://www.tadlys.com
14WhereNet Company. http://www.wherenet.com/
15MPS. http://mesh.nowwireless.com/index.htm

that MPS position location information, accurate to within 10 m,
is generated in less than 1 s at mobility speeds of up to 200 mi/h.

2) Positioning Using Multiple Media: Designing a location
system for a single environment presents difficulties when the
system is applied to other environments. To successfully bridge
the differences among different types of sensors and overcome
the limitations of a single type of positioning sensor, hybrid
systems attempt to compensate for the shortcomings of a single
technology by using multiple sensor types. HP Labs Smart-
LOCUS [58] uses synchronized RF and ultrasound differential
time-of-flight measurements to determine the internodal range
between any two nodes. HP Labs researchers developed sev-
eral techniques to create relative coordinate geometries with
little user intervention. To create an absolute frame of reference
and tie internodal topology to building geometry, a minimum
of three or four nodes (for 2-D or 3-D localizations) must be
preassigned to suitable fixed locations. All the remaining nodes
are free to move, and locations are continuously updated and
known to the rest of the system. The well-known cricket indoor
location system also uses RF and ultrasound media [59].

Infrared Radiation (IR) wireless is the use of wireless tech-
nology in devices or systems that convey data through infrared
radiation. IR is used in wireless personal area network (WPAN)
since it is a short-range narrow-transmission-angle beam suit-
able for aiming and selective reception of signals. Most of the
Infrared Data Association (IrDA) wireless system is based on
the LOS mode. Considering the high room accuracy of the IR
location [60], and the high availability of the UHF location, it
makes sense to combine the two methods into a hybrid location
system. Several other companies like Radianse16 and Versus17

use a combination of RF and IR signals to perform location po-
sitioning. Their tags emit IR and RF signals containing a unique
identifier for each person or asset being tracked. The use of RF
allows coarse-grain positioning (e.g., floor) while the IR signals
provide additional resolution (e.g., room). The EIRIS local posi-
tioning system18 uses an IRFID triple technology that combines
IR, RF (UHF), and LF (RF low-frequency transponder) signals.
It combines the advantages of each technology, i.e., the room
location of IR, the wide range of RF, and the tailored range sen-
sitivity of LF. However, comparing to RF and IR hybrid system,
it could be more costly.

3) Positioning Using Cordless Phone System: Cordless
phone system is a modern wireless communication infrastruc-
ture. Schwaighofer et al. [61] used digital enhanced cordless
telecommunications (DECT) cellular network to solve the in-
door positioning problem. They used Gaussian process (GP)
algorithm to calculate the phone location based on the RSS of
phones in the DECT network. They showed that their Gaussian
process positioning system (GPPS) can provide sufficient ac-
curacy of 7.5 m when used within a DECT network. They
also used kNN to compare with the GP method, and showed
that kNN can reach an accuracy of 7 m for DECT cellular
network.

16Radianse, Inc. Radianse Indoor Positioning. http://www.radianse.com
17Versus Technology. http://www.versustech.com
18EIRIS System. http://www.elcomel.com.ar/english/eiris.htm
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TABLE I
WIRELESS-BASED INDOOR POSITIONING SYSTEM AND SOLUTION

The Locus system uses RSS and scene analysis to locate spe-
cific personal handyphone system (PHS) wireless devices [62].
Locus is overlaid on the basic PHS cellular service. To refine
location beyond cell proximity, Locus uses a signal propagation
model to account for some multipath effects. They report a mean
error of 40–50 m.

4) Positioning Using Wireless Sensor Network Techniques:
Dramatic advances in RF and microelectromechanical (MEMS)
IC design have made possible the use of large networks of
wireless sensors for a variety of new monitoring and con-
trol applications [63], [64]. Accurate and low-cost sensor
localization is a critical requirement for the deployment of
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wireless sensor networks in a wide variety of applications,
including indoor location positioning [65]. Such systems using
wireless sensor network have been described as “cooperative,”
“relative,” “multi-hop,” “GPS-free,” or “network” localization;
“ad-hoc” or “sensor” positioning; and “self-localization” in
various papers. Communication and measurements between
many pairs of sensors are required to achieve localization
for all sensors. We refer the readers to [14] for more details
about cooperative localization. Up to now, two major sensor
network standards are the IEEE 802.15.4 physical (PHY) layer
and medium access control (MAC) layer standard for low-rate
wireless personal-area networks (LR-WPANs), and the ZigBee
networking and application layer standard [67]. These standards
allow for localization information to be measured between pairs
of sensors. In particular, RSS can be measured in the 802.15.4
PHY standard via the link quality indication (LQI), which
reports the signal strength associated with a received packet
to higher layers. Most of the sensor-network-based location
estimations use RSS measurement [68], [69]. Some systems
also use TOA measurement [68], [70]. Others take AOA
measurement such as ad hoc positioning system (APS) [71].

Table I briefly compares the current systems and solutions.
The systems solutions shown in this table are mainly the ones
whose specifications have been reported by their developers.
We have excluded the cases in which little or no information on
them has been made available.

V. CONCLUSION AND FUTURE TRENDS

This paper surveys the current indoor positioning techniques
and systems. Different performance measurement criteria are
discussed and several tradeoffs among them are observed. For
example, the one between complexity and accuracy/precision
needs careful consideration when we choose positioning sys-
tems and techniques for different applications environments
such as warehousing, robotics, or emergency. Usually, loca-
tion fingerprinting scheme is better for open areas while Active
RFID is suitable for dense environments. In terms of scalability
and availability, these positioning techniques and systems have
their own important characteristics when applied in real envi-
ronments. The choice of technique and technology significantly
affects the granularity and accuracy of the location information.

Future trends of wireless indoor positioning systems are as
follows.

1) New or hybrid position algorithms are needed. A few of
the works have already been started supporting such algo-
rithms. For example, a calibration-free location algorithm
based on triangulation, triangular interpolation and extrap-
olation (TIX), is introduced in [75]. A hybrid algorithm
is presented in [76] for indoor positioning using WLAN
that aims to combine the benefits of the RF propagation
loss model and fingerprinting method. The same work has
been done in [77]. The selective fusion location estima-
tion (SELFLOC) [72] algorithm infers the user location
by selectively fusing location information from multiple
wireless technologies and/or multiple classical location
algorithms in a theoretically optimal manner.

2) Internetworking of different wireless positioning systems
is a research and practical topic in order to extend the
positioning range.

3) Wireless combined with other technologies such as optical
(e.g., IR), inertial, dc electromagnetic and ultrasonic for
indoor location is another trend. How to combine these
technologies into a practical system is a topic of sensor
fusion.

4) How to deploy sensors to improve the positioning accu-
racy, how to finish deploying wireless positioning system
in a short time, especially for emergency responder appli-
cation is also worth considering [73].

5) Wireless indoor location using UWB (from 3.1 to
10.6 GHz) techniques19 and indoor positioning using mo-
bile cellular network are other promising research top-
ics [31].

6) How to integrate indoor and outdoor positioning system
is another area of research.20 This integration may help
in developing more efficient and robust detection systems
for positioning of mobile computing nodes. In this case,
a mobile node will be tracked indoor or outdoor using the
same detection system.
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