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Abstract—Indoor localization has recently witnessed an in-
crease in interest, due to the potential wide range of services it
can provide by leveraging Internet of Things (IoT), and ubiqui-
tous connectivity. Different techniques, wireless technologies and
mechanisms have been proposed in the literature to provide
indoor localization services in order to improve the services
provided to the users. However, there is a lack of an up-
to-date survey paper that incorporates some of the recently
proposed accurate and reliable localization systems. In this
paper, we aim to provide a detailed survey of different indoor
localization techniques such as Angle of Arrival (AoA), Time of
Flight (ToF), Return Time of Flight (RTOF), Received Signal
Strength (RSS); based on technologies such as WiFi, Radio
Frequency Identification Device (RFID), Ultra Wideband (UWB),
Bluetooth and systems that have been proposed in the literature.
The paper primarily discusses localization and positioning of
human users and their devices. We highlight the strengths of
the existing systems proposed in the literature. In contrast with
the existing surveys, we also evaluate different systems from the
perspective of energy efficiency, availability, cost, reception range,
latency, scalability and tracking accuracy. Rather than comparing
the technologies or techniques, we compare the localization
systems and summarize their working principle. We also discuss
remaining challenges to accurate indoor localization.

Index Terms—Indoor Localization, Location Based Services,
Internet of Things.

I. INTRODUCTION

The wide-scale proliferation of smart phones and other
wireless devices in the last couple of years has resulted in
a wide range of services including indoor localization. Indoor
localization is the process of obtaining a device or user
location in an indoor setting or environment. Indoor device
localization has been extensively investigated over the last few
decades, mainly in industrial settings and for wireless sensor
networks and robotics. However, it is only less than a decade
ago since the wide-scale proliferation of smart phones and
wearable devices with wireless communication capabilities
have made the localization and tracking of such devices
synonym to the localization and tracking of the corresponding
users and enabled a wide range of related applications and
services. User and device localization have wide-scale appli-
cations in health sector, industry, disaster management [1]–[3],
building management, surveillance and a number of various
other sectors. It can also benefit many novel systems such as
Internet of Things (IoT) [4], smart architectures (such as smart
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cities [5], smart buildings [6], smart grids [7]) and Machine
Type Communication (MTC) [8].

IoT is an amalgamation of numerous heterogeneous tech-
nologies and communication standards that intend to provide
end-to-end connectivity to billions of devices. Although cur-
rently the research and commercial spotlight is on emerging
technologies related to the long-range machine-to-machine
communications, existing short- and medium-range technolo-
gies, such as Bluetooth, Zigbee, WiFi, UWB, etc., will remain
inextricable parts of the IoT network umbrella. While long-
range IoT technologies aim to provide high coverage and low
power communication solution, they are incapable to support
the high data rate required by various applications in local
level. This is why a great number of IoT devices (depending
on the underlying application) will utilize more than one
communication interface, one for short and one for long range
communication.

On the other hand, although long-range IoT technologies
have not been designed with indoor localization provision,
many IoT applications will require seamless and ubiquitous
indoor/outdoor localization and/or navigation of both static
and mobile devices. Traditional short-range communication
technologies can estimate quite accurately the relative indoor
location of an IoT device with respect to some reference
points, but the global location (i.e., longitude-latitude geo-
graphic coordinates) of these devices remains unknown, unless
the global location of the reference points is also known.
Emerging long-range IoT technologies can provide an estimate
of the global location of a device (since the exact locations
of their access points are normally known), however their
accuracy deemed very low, especially for indoor environments.
We believe that the close collaboration between short- and
long-range IoT technologies will be needed in order to sat-
isfy the diverse localization requirements of the future IoT
networks and services. This is why in this survey paper we
are addressing how both traditional short-range and emerging
long-range IoT technologies can be used for localization
(even though the latter cannot be explicitly used for indoor
localization).

Before we start the description of the different localization
techniques, technologies and systems, we would like to sum-
marize the various notations and symbols which will be used
in this paper in Table I. Moreover we introduce the following
definitions:

• Device based localization (DBL): The process in which
the user device uses some Reference Nodes (RN) or
anchor nodes to obtain its relative location. DBL is
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primarily used for navigation, where the user needs
assistance in navigating around any space.

• Monitor based localization (MBL): The process in which
a set of anchor nodes or RNs passively obtains the
position of the user or entity connected to the reference
node. MBL is primarily used for tracking the user and
then accordingly providing different services.

• Proximity Detection: The process of estimating the dis-
tance between a user and a Point of Interest (PoI).
Proximity detection has recently been seen as a reliable
and cost effective solution for context aware services 1.

It is important to differentiate between device and monitor
based localization since each of them has different require-
ments in terms of energy efficiency, scalability and perfor-
mance. It is also worth mentioning that proximity is another
type of localization which requires the relative distance be-
tween two objects (or users) of interest instead of their exact
location. While the first generation of Location based Services
(LBS) did not garner significant attention due to its network-
centric approach, the second generation of LBS is user-centric
and is attracting the interest of researchers around the world
[9]. Both service providers and end users can benefit from
LBS and Proximity based Services (PBS). For example, in
any shopping mall, the users can use navigation and tracking
services to explore the store and get to their desired location.
The user can be rewarded by the shop or the mall through
discount coupons or promotions based on their location, which
will improve the customer experience. The service provider
can also benefit from such a system as the anonymized user
location data can provide useful insights about the shopping
patterns, which can be used to increase their sales.

A. Existing Indoor Localization Survey Papers

While the literature contains a number of survey articles
[10]–[19] on indoor localization, there is a need for an up-
to-date survey paper that discusses some of the latest systems
and developments [20]–[30] in the field of indoor localization
with emphasis on tracking users and user devices. Al Nuaimi
et al. [10] provide a discussion on different indoor localization
systems proposed in the literature and highlight challenges
such as accuracy that localization systems face. Liu et al. [15]
provide a detailed survey of various indoor positioning tech-
niques and systems. The paper provides detailed discussion
on the technologies and techniques for indoor localization as
well as present some localization systems. Amundson et al.
[11] presents a survey on different localization methods for
wireless sensors. The survey primarily deals with WSNs and
is for both indoor and outdoor environment. Davidson et al.
[18] provide a survey of different indoor localization methods
using smartphone. The primary emphasis of the paper is finger-
printing (radio/magnetic) and smartphone based localization
systems. Ferreira et al. [19] present a detailed survey of indoor
localization system for emergency responders. While different
localization techniques, and technologies have been discussed,

1Services provided to the user based not only on location, but also the user
relevant information such as age, gender, preference etc.

the survey primarily discusses systems that are for emergency
response systems.

However, the existing surveys do not provide an exhaus-
tive and detailed discussion on the access technologies and
techniques that can be used for localization and only use
them for comparing different solutions proposed in literature.
Furthermore, most of the existing surveys are specific to a
certain domain (such as [18] deals with smartphone based
localization, and [19] deals with emergency responding sit-
uations). Therefore, there is a need for a generic survey,
which presents a discussion on some of the novel systems that
provide high localization accuracy. For sake of completeness
and to make our survey applicable also to readers who have
no prior expertise in indoor localization, we provide a tutorial
on basics of techniques and technologies that are used for
indoor localization. Furthermore, the wide-scale connectivity
offered by IoT can also open a wide range of opportunities for
indoor localization. It is important to understand opportunities,
and challenges of leveraging the IoT infrastructure for indoor
localization. In this paper, we present a thorough and detailed
survey of different localization techniques, technologies and
systems. We aim to provide the reader with some of the latest
localization systems and also evaluate them from cost, energy
efficiency, reception range, availability, latency, scalability, and
localization accuracy perspective. We also attempt to establish
a bidirectional link between IoT and indoor localization. Our
goal is to provide readers, interested in indoor localization,
with a comprehensive and detailed insight into different as-
pects of indoor localization so that the paper can serve as a
starting point for further research.

B. Key Contributions

1) This work provides a detailed survey of different indoor
localization systems particularly for user device tracking
that has been proposed in the literature between 1997
and 2018. We evaluate these systems using an evaluation
framework to highlight their pros and cons. We primarily
focus on some of the more recent solutions (from 2013 to
2018) some of which have achieved sub-meter accuracy.

2) This work provides a detailed discussion on different
technologies that can be used for indoor localization
services. We provide the pros and cons of different
technologies and highlight their suitability and challenges
for indoor localization.

3) We provide an exhaustive discussion on different tech-
niques that can be used with a number of technologies for
indoor localization. The discussed techniques rely on the
signals emitted by the access technology (both monitor
based and device based localization) to obtain an estimate
of the user location.

4) Due to the recent increase of interest in Internet of Things
(IoT), we provide a primer on IoT and highlight indoor
localization induced challenges for IoT. We also discuss
some of the emerging IoT technologies that are optimized
for connecting billions of IoT devices, and analyze their
viability for indoor localization. We conclude, on the
basis of our analysis, that the emerging IoT technologies
are currently not suitable for sub-meter accuracy.
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TABLE I
NOTATIONS USED THROUGHOUT THE PAPER

AoA Angle of Arrival BLE Bluetooth Low Energy
CSI Channel State Information CFR Channel Frequency Response
CSS Chirp Spread Spectrum DBL Device based Localization
dBm decibel-milliwatts EKF Extended Kalman Filter

GW Gateways GPS Global Positioning System
IoT Internet of Things ISM Industrial, Scientific and Medical
ID Identity KF Kalman Filter
kNN k-Nearest Neighbor LoRA Long Range Radio

LBS Location Based Services LoS Line-of-Sight
LEDs Light Emitting Diodes LPWAN Low Power Wide Area Network
MTC Machine-Type Communication MAC Medium Access Control
MBL Monitor/Mobile Based Localiza-

tion
ns nano second

PHY Physical Layer PF Particle Filter
PBS Proximity based Systems PoA Phase-of-Arrival
RN Reference Node RSSI Received Signal Strength Indicator
RToF Return Time of Flight RF Radio Frequency
Rx Receiver RFID Radio Frequency Identification
S Distance SAR Synthetic Aperture Radar
SVM Support Vector Machine ToF Time of Flight
Tx Transmitters T Time
UHF Ultra-high Frequency UNB Ultra-Narrow Band
UWB Ultra-wideband V Propagation Speed
VLC Visible Light Communication 2D 2-Dimensional
3D 3-Dimensional

5) We discuss an evaluation framework that can be used
to assess different localization systems. While indoor
localization systems are highly application dependent,
a generic evaluation framework can help in thoroughly
analyzing the localization system.

6) This work also discusses some of the existing and
potential applications of indoor localization. Different
challenges that indoor localization currently faces are also
discussed.

C. Structure of the Paper
The paper is further structured as follows.
• Section II: We discuss different techniques such as RSSI,

CSI, AoA, ToF, TDoA, RToF, and PoA for localization in
Section II. We also discuss fingerprinting/scene analysis
as it is one of the widely used methods with RSSI
based localization. Furthermore, we discussed techniques
such as probabilistic methods, Neural Networks (NN),
k-Nearest Neighbors (kNN) and Support Vector Machine
(SVM) that are used with RSSI fingerprints to obtain user
location.

• Section III: We provide different technologies with par-
ticular emphasis on wireless technologies that can be
used for indoor localization. We primarily discuss WiFi,
Bluetooth, Zigbee, RFID, UWB, Visible Light, Acoustic
Signals, and ultrasound. The discussion is primarily from
localization perspective and we discuss the advantages
and challenges of all the discussed technologies.

• Section IV: We present a primer on Internet of Things
(IoT). We list some of the challenges that will arise for
IoT due to indoor localization. We also provide an insight
into emerging IoT technologies such as Sigfox, LoRA,
IEEE 802.11ah, and weightless that can be potentially
used for indoor localization.

• Section V: We present some of the metrics that can
be used to evaluate the performance of any localization

system. Our evaluation framework consists of metrics
such as availability, cost, energy efficiency, reception
range, tracking accuracy, latency and scalability.

• Section VI: We survey various localization systems that
have been proposed in literature. We focus on different
solutions that have been proposed between 1997 and
2016. Different solutions are evaluated using our eval-
uation framework.

• Section VII: We discuss different possible applications
of localization. We highlight the use of localization in
contextual aware location based marketing, health ser-
vices, disaster management and recovery, security, asset
management/tracking and Internet of Things.

• Section VIII: We provide a discussion on different chal-
lenges that indoor localization systems currently face.
We primarily discuss the multipath effects and noise,
radio environment, energy efficiency, privacy and security,
cost, negative impact of the localization2 on the used
technology and the challenges arising due to handovers.

• Section IX: We provide the conclusion of the survey.

II. LOCALIZATION TECHNIQUES

In this section, various signal metrics which are widely used
for localization will be discussed.

A. Received Signal Strength Indicator (RSSI)

The received signal strength (RSS) based approach is one
of the simplest and widely used approaches for indoor local-
ization [31]–[35]. The RSS is the actual signal power strength
received at the receiver, usually measured in decibel-milliwatts
(dBm) or milliWatts (mW). The RSS can be used to estimate

2negative impact on the basic purpose of the used technology i.e. providing
connectivity to the users. As seen in [20], the throughput of the Wi-Fi AP
reduces with increase in the number of users that are to be localized using
the AP.
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the distance between a transmitter (Tx) and a receiver (Rx)
device; the higher the RSS value the smaller the distance
between Tx and Rx. The absolute distance can be estimated
using a number of different signal propagation models given
that the transmission power or the power at a reference point is
known. RSSI (which is often confused with RSS) is the RSS
indicator, a relative measurement of the RSS that has arbitrary
units and is mostly defined by each chip vendor. For instance,
the Atheros WiFi chipset uses RSSI values between 0 and 60,
while Cisco uses a range between 0 and 100. Using the RSSI
and a simple path-loss propagation model [36], the distance d
between Tx and Rx can be estimated from (1) as

RSSI = −10n log10(d) +A, (1)

where n is the path loss exponent (which varies from 2 in free
space to 4 in indoor environments) and A is the RSSI value
at a reference distance from the receiver.

RSS based localization, in the DBL case, requires trilatera-
tion or N -point lateration, i.e., the RSS at the device is used to
estimate the absolute distance between the user device and at
least three reference points; then basic geometry/trigonometry
is applied for the user device to obtain its location relative to
the reference points as shown in Figure 1. In a similar manner,
in the MBL case, the RSS at the reference points is used to
obtain the position of the user device. In the latter case, a
central controller or ad-hoc communication between anchor
points is needed for the total RSS collection and processing.
On the other hand, RSS based proximity based services (such
as sending marketing alerts to a user when in the vicinity
of a retail store), require a single reference node to create a
geofence 3 and estimate the proximity of the user to the anchor
node using the path loss estimated distance from the reference
point.

While the RSS based approach is simple and cost efficient, it
suffers from poor localization accuracy (especially in non-line-
of-sight conditions) due to additional signal attenuation result-
ing from transmission through walls and other big obstacles
and severe RSS fluctuation due to multipath fading and indoor
noise [31], [37]. Different filters or averaging mechanisms can
be used to mitigate these effects. However, it is unlikely to
obtain high localization accuracy without the use of complex
algorithms.

B. Channel State Information (CSI)

In many wireless systems, such as IEEE 802.11 and UWB,
the coherence bandwidth of the wireless channel is smaller
than the bandwidth of the signal which makes the channel
frequency selective (i.e., different frequencies exhibit different
amplitude and phase behavior). Moreover, in multiple antennae
transceivers, the channel frequency responses for each anten-
nae pairs may significantly vary (depending on the antennae
distance and signal wavelength). While RSS has been widely
used due to its simplicity and low hardware requirements, it
merely provides an estimate of the average amplitude over
the whole signal bandwidth and the accumulated signal over

3A virtual fence around any Point of Interest

Fig. 1. RSSI based localization

all antennae. These make RSS susceptible to multipath effects
and interference and causes high variability over time.

On the other hand, the Channel Impulse Response (CIR) or
its Fourier pair, i.e., the Channel Frequency Response (CFR),
which is normally delivered to upper layers as channel state
information (CSI), has higher granularity than the RSS as
it can capture both the amplitude and phase responses of
the channel in different frequencies and between separate
transmitter-receiver antennae pairs [31]. In general, the CSI
is a complex quantity and can be written in a polar form as

H(f) = |H(f)|ej∠H(f), (2)

where, |H(fi)| is the amplitude (or magnitude) response
and ∠H(fi) is the phase response of the frequency fi of
the channel. Nowadays, many IEEE 802.11 NICs cards can
provide subcarrier-level channel measurements for Orthogonal
Frequency Division Multiplexing (OFDM) systems which can
be translated into richer multipath information, more stable
measurements and higher localization accuracy.

C. Fingerprinting/Scene Analysis

Scene analysis based localization techniques usually require
environmental survey to obtain fingerprints or features of
the environment where the localization system is to be used
[9], [38]. Initially, different RSSI measurements are collected
during an offline phase. Once the system is deployed, the
online measurements (obtained during real-time) are compared
with the offline measurements to estimate the user location.
Usually the fingerprints or features are collected in form of
RSSI or CSI. There are a number of algorithms available that
can be used to match the offline measurements with online
measurement, some of which are discussed below.

a) Probabilistic methods: Probabilistic methods rely on
the likelihood of the user being in position ‘x’ provided the
RSSI values, obtained in online phase, are ‘y’. Suppose that the
set of location candidates L is L = {L1, L2, L3, ...., Lm}. For
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any observed online RSSI value vector O, user/device location
will be Lj if

P (Lj |O) > P (Lk|O) for j, k = 1, 2, 3, .....,m k 6= j (3)

Equation (3) shows that a user will be classified in location Lj

if its likelihood is higher than any other location. If P (Lj) =
P (Lk) for j, k = 1, 2, 3, .....m, then using Bayes’ theorem,
we can obtain the likelihood probability of the observation
signal vector being O given that the user is in location Lj as
P (O|Lj). Mathematically, the user would be classified in the
location Lj if

P (O|Lj) > P (O|Lk) for j, k = 1, 2, 3, .....,m k 6= j (4)

The likelihood can be calculated using histogram, and kernel
approaches [15]. For independent RNs in space, the likelihood
of user location can be calculated using the product of the
likelihoods of all RNs.

As described above, fingerprinting methods are using the
online RSSI or CSI measurements to map the user/device
position on a discrete grid; each point on this grid corresponds
to the position in space where the corresponding offline mea-
surements (i.e., fingerprints) were obtained. Therefore, finger-
printing provides discrete rather than continuous estimation of
the user/device location. Theoretically, the location estimation
granularity can be increased by reducing the distance between
the offline measurement points (i.e., increasing the density
of the grid) to the point where almost continuous location
estimation is obtained. However, in this case, the difference in
the signal strength between two neighbor points will become
much smaller than the typical indoor signal variations (due to
the channel statistics and measurement noise), which makes
the estimation of the correct point almost impossible. There-
fore, there is an important tradeoff between the fingerprinting
position granularity and the probability of successful location
estimation which needs to be taken into consideration when the
fingerprinting locations are chosen. It is also worth mentioning
that while the fingerprinting and scene analysis techniques can
provide accurate localization estimations, since they depend on
offline and online measurements at different time instances,
they are very susceptible to changes of the environment over
time.

b) Artificial Neural Networks: Artificial Neural networks
(ANN) are used in a number of classification and forecasting
scenarios. For localization, the NN has to be trained using
the RSSI values and the corresponding coordinates that are
obtained during the offline phase [39]. Once the ANN is
trained, it can then be used to obtain the user location based on
the online RSSI measurements. The Multi-Layer Perceptron
(MLP) network with one hidden node layer is one of the
commonly used ANN for localization [15]. In MLP based
localization, an input vector of the RSSI measurements is
multiplied with the input weights and added into an input layer
bias, provided that bias is selected. The obtained result is then
put into hidden layer’s transfer function. The product of the
transfer function output and the trained hidden layer weights is
added to the hidden layer bias (if bias is chosen). The obtained
output is the estimated user location.

Fig. 2. AoA based localization

c) k-Nearest Neighbor (kNN): The k-Nearest Neighbor
(kNN) algorithms relies on the online RSSI to obtain the k-
nearest matches (on the basis of offline RSSI measurements
stored in a database) of the known locations using root mean
square error (RMSE) [15]. The nearest matches are then
averaged to obtain an estimated location of the device/user. A
weighted kNN is used if the distances are adopted as weights
in the signal space, otherwise a non-weighted kNN is used.

d) Support Vector Machine (SVM): Support vector ma-
chine is an attractive approach for classifying data as well as
regression. SVM is primarily used for machine learning (ML)
and statistical analysis and has high accuracy. As highlighted
in [15], SVM can also be used for localization using offline
and online RSSI measurements.

D. Angle of Arrival (AoA)

Angle of Arrival (AoA) based approaches use antennae
arrays [22] (at the receiver side) to estimate the angle at which
the transmitted signal impinges on the receiver by exploiting
and calculating the time difference of arrival at individual
elements of the antennae array. The main advantage of AoA is
that the device/user location can be estimated with as low as
two monitors in a 2D environment, or three monitors in a 3D
environment respectively. Although AoA can provide accurate
estimation when the transmitter-receiver distance is small,
it requires more complex hardware and careful calibration
compared to RSS techniques, while its accuracy deteriorates
with increase in the transmitter-receiver distance where a slight
error in the angle of arrival calculation is translated into a huge
error in the actual location estimation [21]. Moreover, due to
multipath effects in indoor environments the AoA in terms of
line of sight (LOS) is often hard to obtain. Figure 2 shows
how AoA can be used to estimate the user location (as the
angles at which the signals are received by the antenna array
can help locate the user device.).
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Fig. 3. ToF based user equipment (UE) localization

E. Time of Flight (ToF)

Time of Flight (ToF) or Time of Arrival (ToA) exploits
the signal propagation time to calculate the distance between
the transmitter Tx and the receiver Rx [40]. The ToF value
multiplied by the speed of light c = 3 × 108 m/sec provides
the physical distance between Tx and Rx. In Figure 3, the ToF
from three different reference nodes is used to estimate the
distances between the reference nodes and the device. Basic
geometry can be used to calculate the location of the device
with respect to the access points. Similar to the RSS, the ToF
values can be used in both the DBL and MBL scenarios.

ToF requires strict synchronization between transmitters and
receivers and, in many cases, timestamps to be transmitted
with the signal (depending on the underlying communication
protocol). The key factors that affect ToF estimation accuracy
are the signal bandwidth and the sampling rate. Low sampling
rate (in time) reduces the ToF resolution since the signal may
arrive between the sampled intervals. Frequency domain super-
resolution techniques are commonly used to obtain the ToF
with high resolution from the channel frequency response.
In multipath indoor environments, the larger the bandwidth,
the higher the resolution of ToF estimation. Although large
bandwidth and super-resolution techniques can improve the
performance of ToF, still they cannot eliminate significant
localization errors when the direct line of sight path between
the transmitter and receiver is not available. This is because
the obstacles deflect the emitted signals, which then traverse
through a longer path causing an increase in the time taken
for the signal to propagate from Tx to Rx. Let t1 be the time
when Tx i sends a message to the Rx j that receives it at
t2 where t2 = t1 + tp (tp is the time taken by the signal to
traverse from Tx to Rx) [40]. So the distance between the i
and j can be calculated using Equation (5)

Dij = (t2 − t1)× v (5)

where v is the signal velocity.

Fig. 4. TDoA based localization and proximity detection

F. Time Difference of Arrival (TDoA)

Time Difference of Arrival (TDoA) exploits the difference
in signals propagation times from different transmitters, mea-
sured at the receiver. This is different from the ToF technique,
where the absolute signal propagation time is used. The
TDoA measurements (TD(i,j) - from transmitters i and j) are
converted into physical distance values LD(i,j) = c · TD(i,j),
where c is the speed of light. The receiver is now located on
the hyperboloid given by Eq.(6)

LD(i,j) =
√
(Xi − x)2 + (Yi − y)2 + (Zi − z)2

−
√

(Xj − x)2 + (Yj − y)2 + (Zj − z)2, (6)

where (Xi, Yi, Zi) are the coordinates of the transmit-
ter/reference node i and (x, y, z) are the coordinates of the
receiver/user. The TDoA from at least three transmitters is
needed to calculate the exact location of the receiver as the
intersection of the three (or more) hyperboloids. The system
of hyperbola equations can be solved either through linear
regression [15] or by linearizing the equation using Taylor-
series expansion. Figure 4 shows how four different RNs
can be used to obtain the 2D location of any target. Figure
shows the hyperbolas formed as a result of the measurements
obtained from the RNs to obtain the user location (black
dot). The TDoA estimation accuracy depends (similar to the
ToF techniques) on the signal bandwidth, sampling rate at
the receiver and the existence of direct line of sight between
the transmitters and the receiver. Strict synchronization is also
required, but unlike ToF techniques where synchronization is
needed between the transmitter and the receiver, in the TDoA
case only synchronization between the transmitters is required.

G. Return Time of Flight (RToF)

RToF measures the round-trip (i.e., transmitter-receiver-
transmitter) signal propagation time to estimate the distance
between Tx and Rx [40]. The ranging mechanisms for both
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ToF and RToF are similar; upon receiving a signal from
the transmitter, the receiver responds back to the transmitter,
which then calculates the total round-trip ToF. The main bene-
fit of RToF is that a relatively moderate clock synchronization
between the Tx and the Rx is required, in comparison to ToF.
However, RToF estimation accuracy is affected by the same
factors as ToF (i.e., sampling rate and signal bandwidth) which
in this case is more severe since the signal is transmitted and
received twice. Another significant problem with RToF based
systems is the response delay at the receiver which highly
depends on the receiver electronics and protocol overheads.
The latter one can be neglected if the propagation time
between the transmitter and receiver is large compared to the
response time, however the delay cannot be ignored in short
range systems such as those used for indoor localization. Let
t1 be the time when Tx i sends a message to the Rx j that
receives it at t2 where t2 = t1 + tp. j, at time t3, transmits a
signal back to i that receives it at t4 So the distance between
the i and j can be calculated using Equation (7) [40]

Dij =
(t4 − t1)− (t3 − t2)

2
× v (7)

H. Phase of Arrival (PoA)

PoA based approaches use the phase or phase difference of
carrier signal to estimate the distance between the transmitter
and the receiver. A common assumption for determining the
phase of signal at receiver side is that the signals transmitted
from the anchor nodes (in DBL), or user device (in MBL) are
of pure sinusoidal form having same frequency and zero phase
offset. There are a number of techniques available to estimate
the range or distance between the Tx and Rx using PoA. One
technique is to assume that there exists a finite transit delay Di

between the Tx and Rx, which can be expressed as a fraction
of the signal wavelength. As seen in Figure 5, the incident
signals arrive with a phase difference at different antenna in the
antenna array, which can be used to obtain the user location. A
detailed discussion on PoA-based range estimation is beyond
the scope of the paper. Therefore interested readers are referred
to [41], [42]. Following range estimation, algorithms used
for ToF can be used to estimate user location. If the phase
difference between two signals transmitted from different
anchor points is used to estimate the distance, TDoA based
algorithms can be used for localization. PoA can be used in
conjunction with RSSI, ToF, TDoA to improve the localization
accuracy and enhance the performance of the system. The
problem with PoA based approach is that it requires line-of-
sight for high accuracy, which is rarely the case in indoor
environments.

Table II provides a summary of the discussed techniques for
indoor localization and discusses the advantages and disadvan-
tages of these techniques. Interested readers are referred to
[40] for detailed discussion on these localization techniques.

III. TECHNOLOGIES FOR LOCALIZATION

In this section, several existing technologies which have
been used to provide indoor localization services will be
presented and discussed. Radio communication technologies,

Fig. 5. PoA based localization

such as, IEEE 802.11, Bluetooth, Zigbee, RFID and Ultra-
Wideband (UWB), will be presented first, followed by vis-
ible light and acoustic based technologies. Finally, several
emerging technologies which can be also used as localization
enablers will be discussed. While there are a number of lo-
calization systems based on camera/vision technologies, such
systems are beyond the scope of this survey and will not be
discussed here.

A. WiFi

The IEEE 802.11 standard, commonly known as WiFi,
operates in the Industrial, Scientific, and Medical (ISM) band
and is primarily used to provide networking capabilities and
connection to the Internet to different devices in private, public
and commercial environments. Initially, WiFi had a reception
range of about 100 meters [15] which has now increased to
about 1 kilometer (km) [43], [44] in IEEE 802.11ah (primarily
optimized for IoT services).

Most of the current smart phones, laptops and other portable
user devices are WiFi enabled, which makes WiFi an ideal
candidate for indoor localization and one of the most widely
studied localization technologies in the literature [20]–[23],
[37], [45], [46], [47]–[54],[55], [56]. Since existing WiFi
access points can be also used as reference points for signal
collection [21], basic localization systems (that can achieve
reasonable localization accuracy) can be built without the need
for additional infrastructure.

However, existing WiFi networks are normally deployed for
communication (i.e., to maximize data throughput and network
coverage) rather than localization purposes and therefore novel
and efficient algorithms are required to improve their localiza-
tion accuracy. Moreover, the uncontrolled interference in the
ISM band has been shown to affect the localization accuracy
[57]. The aforementioned RSS, CSI, ToF and AoA techniques
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TABLE II
ADVANTAGES AND DISADVANTAGES OF DIFFERENT LOCALIZATION TECHNIQUES

Technique Advantages Disadvantages
RSSI Easy to implement, cost efficient, can be used with a number

of technologies
Prone to multipath fading and environmental noise, lower
localization accuracy, can require fingerprinting

CSI More robust to multipath and indoor noise, It is not easily available on off-the-shelf NICs
AoA Can provide high localization accuracy, does not require any

fingerprinting
Might require directional antennas and complex hardware,
requires comparatively complex algorithms and performance
deteriorates with increase in distance between the transmitter
and receiver

ToF Provides high localization accuracy, does not require any
fingerprinting

Requires time synchronization between the transmitters and
receivers, might require time stamps and multiple antennas at
the transmitter and receiver. Line of Sight is mandatory for
accurate performance.

TDoA Does not require any fingerprinting, does not require clock
synchronization among the device and RN

Requires clock synchronization among the RNs, might require
time stamps, requires larger bandwidth

RToF Does not require any fingerprinting, can provide high local-
ization accuracy

Requires clock synchronization, processing delay can affect
performance in short ranger measurements

PoA Can be used in conjunction with RSS, ToA, TDoA to improve
the overall localization accuracy

Degraded performance in the absence of line of sight

Fingerprinting Fairly easy to use New fingerprints are required even when there is a minor
variation in the space

(and any combination of them - i.e., hybrid methods) can be
used to provide WiFi based localization services. Recent WiFi
based localization systems [20], [21], [23], details of which
are given in Section VI, have achieved median localization
accuracy as high as 23cm [22]. For detailed information about
WiFi, readers are referred to [58].

B. Bluetooth
Bluetooth (or IEEE 802.15.1) consists of the physical and

MAC layers specifications for connecting different fixed or
moving wireless devices within a certain personal space. The
latest version of Bluetooth, i.e., Bluetooth Low Energy (BLE),
also known as Bluetooth Smart, can provide an improved data
rate of 24Mbps and coverage range of 70-100 meters with
higher energy efficiency, as compared to older versions [9].
While BLE can be used with different localization techniques
such as RSSI, AoA, and ToF, most of the existing BLE
based localization solutions rely on RSS based inputs as RSS
based sytems are less complex. The reliance on RSS based
inputs limits its localiztion accuracy. Even though BLE in its
original form can be used for localization (due to its range,
low cost and energy consumption), two BLE based protocols,
i.e., iBeacons (by Apple Inc.) and Eddystone (by Google
Inc.), have been recently proposed, primarily for context aware
proximity based services.

Apple announced iBeacons in the World Wide Developer
Conference (WWDC) in 2013 [59]. The protocol is specifically
designed for proximity detection and proximity based services.
The protocol allows a BLE enabled device (also known as
iBeacon or beacon) to transmit beacons or signals at periodic
interval. The beacon message consists of a mandatory 16 byte
Universally Unique Identifier (UUID)4 and optional 2 byte
major5 and minor values6. Any BLE enabled device, that has

4It is the universal identifier of the beacon. Any organization ‘x’ that intends
to have an iBeacon based system will have a constant UUID.

5The organization x can use the major value to differentiate its store in city
y from city z.

6Any store x in city y can have different minor values for the beacons in
different lanes or sections of the store.

a proprietary application to listen to the beacons picks up the
beacon messages and uses RSSI to estimate the proximity
between the iBeacon device and the user. Based on the strength
of the RSSI, the user is classified in immediate (<1m), near (1-
3m), far (>3m) and unknown regions.

The schematic of a typical beacon architecture is depicted
in Figure 6. After receiving a message from the iBeacon, the
user device consults a server or the cloud to identify the action
affiliated with the received beacon. The action might be to send
a discount coupon to be received by the user device, to open
a door or to display some interactive content on a monitor
(actuator) based on the user’s proximity to some beacon or
another entity, etc.

A fundamental constraint of iBeacons (imposed by Apple) is
that only the average RSSI value is reported to the user device
every one second, even though the beacons are transmitted
at 50 ms intervals. This is to account for the variations in
the instantaneous RSS values on the user device. However,
this RSS averaging and reporting delay can impose significant
challenges to real-time localization. While the motive behind
iBeacons was to provide proximity detection, it has also been
used for indoor localization, details of which can be found in
the next section.

C. Zigbee

Zigbee is built upon the IEEE 802.15.4 standard that is
concerned with the physical and MAC layers for low cost,
low data rate and energy efficient personal area networks [60].
Zigbee defines the higher levels of the protocol stack and is
basically used in wireless sensor networks. The Network Layer
in Zigbee is responsible for multihop routing and network
organization while the application layer is responsible for
distributed communication and development of application.
While Zigbee is favorable for localization of sensors in WSN,
it is not readily available on majority of the user devices, hence
it is not favorable for indoor localization of users.
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Fig. 6. Typical architecture for iBeacon based systems

D. Radio Frequency Identification Device (RFID)

RFID is primarily intended for transferring and storing
data using electromagnetic transmission from a transmitter to
any Radio Frequency (RF) compatible circuit [61]. An RFID
system consists of a reader that can communicate with RFID
tags. The RFID tags emit data that the RFID reader can read
using a predefined RF and protocol, known to both the reader
and tags a priori. There are two basic types of RFID systems

• Active RFID: Active RFIDs operate in the Ultra High Fre-
quency (UHF) and microwave frequency range. They are
connected to a local power source, periodically transmit
their ID and can operate at hundreds of meters from the
RFID reader. Active RFIDs can be used for localization
and object tracking as they have a reasonable range, low
cost and can be easily embedded in the tracking objects.
However, the active RFID technology cannot achieve sub-
meter accuracy and it is not readily available on most
portable user devices.

• Passive RFID: Passive RFIDs are limited in communica-
tion range (1-2m) and can operate without battery. They
are smaller, lighter and cost less than the active ones; they
can work in the low, high, UHF and microwave frequency
range. Although they can be used as an alternative to
bar-codes, especially when the tag is not within the line
of sight of the reader, their limited range make them
unsuitable for indoor localization. They can be used for
proximity based services using brute force approaches7,
but this will still require modifications to the existing
procedure used by passive RFIDs such as transmitting
an ID that can be used to identify the RFID and help

E. Ultra Wideband (UWB)

In UWB, ultra short-pulses with time period of <1 nanosec-
ond (ns) are transmitted over a large bandwidth (>500MHz),
in the frequency range from 3.1 to 10.6GHz, using a very
low duty cycle [15] which results in reduced power consump-
tion. The technology has been primarily used for short-range
communication systems, such as PC peripherals, and other
indoor applications. UWB has been a particularly attractive
technology for indoor localization because it is immune to
interference from other signals (due to its drastically differ-
ent signal type and radio spectrum), while the UWB signal

7Increasing the number of tags deployed in any space

(especially the low frequencies included in the broad range
of the UWB spectrum) can penetrate a variety of materials,
including walls (although metals and liquids can interfere with
UWB signals). Moreover, the very short duration of UWB
pulses make them less sensitive to multipath effects, allowing
the identification of the main path in the presence of multipath
signals and providing accurate estimation of the ToF, that has
been shown to achieve localization accuracy up to 10cm [62].

However, the slow progress in the UWB standard develop-
ment (although UWB has been initially proposed for use in
personal area networks PANs), has limited the use of UWB
in consumer products and portable user devices in particular
as standard. Since, an in-depth discussion of UWB is beyond
the scope of this paper, readers are referred to [63], [64] for
further details.

F. Visible Light
Visible Light Communication (VLC) is an emerging tech-

nology for high-speed data transfer [65] that uses visible light
between 400 and 800THz, modulated and emitted primarily by
Light Emitting Diodes (LEDs). Visible light based localization
techniques use light sensors to measure the position and di-
rection of the LED emitters. In other words, the LEDs (acting
like the iBeacons) transmit the signal, which when picked
up by the receiver/sensor can be used for localization. For
visible light, AoA is considered the most accurate localization
technique [65], [66]. The advantage of visible light based
localization is its wide scale proliferation (perhaps even more
than WiFi). However, a fundamental limitation is that line
of sight between the LED and the sensor(s) is required for
accurate localization.

G. Acoustic Signal
The acoustic signal-based localization technology leverages

the ubiquitous microphone sensors in smart-phones to capture
acoustic signals emitted by sound sources/RNs and estimate
the user location with respect to the RNs. The traditional
method used for acoustic-based localization has been the
transmission of modulated acoustic signals, containing time
stamps or other time related information, which are used by
the microphone sensors for ToF estimation [74]. In other
works, the subtle phase and frequency shift of the Doppler
effects experienced in the received acoustic signal by a moving
phone have been also used to estimate the relative position and
velocity of the phone [75].

Although acoustic based systems have been shown to
achieve high localization accuracy, due to the smart-phone
microphone limitations (sampling rate/anti-aliasing filter), only
audible band acoustic signals (<20KHz) can provide accurate
estimations. For this reason, the transmission power should be
low enough not to cause sound pollution (i.e., the acoustic
signal should be imperceptible to human ear) and advanced
signal processing algorithms are needed to improve the low
power signal detection at the receiver. Moreover, the need
of extra infrastructure (i.e., acoustic sources/reference nodes)
and the high update rate (which impacts the device battery),
make the acoustic signal not a very popular technology for
localization.
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TABLE III
SUMMARY OF DIFFERENT WIRELESS TECHNOLOGIES FOR LOCALIZATION

Technology Maximum
Range

Maximum
Throughput

Power
Consumption Advantages Disadvantages

IEEE 802.11 n [67] 250 m outdoor 600 Mbps Moderate Widely available, high accuracy,
does not require
complex extra hardware

Prone to noise, requires
complex processing
algorithms

802.11 ac 35 m indoor 1.3 Gbps Moderate
802.11 ad couple of me-

ters
4.6 Mbps Moderate

UWB [68] 10-20m 460 Mbps Moderate Immune to interference, provides
high accuracy,

Shorter range, requires extra hard-
ware on different user devices, high
cost

Acoustics Couple of me-
ters

Low-Moderate Can be used for proprietary appli-
cations, can provide high accuracy

Affected by sound pollution, re-
quires extra anchor points or hard-
ware

RFID [69] 200 m 1.67 Gbps Low Consumes low power, has wide
range

Localization accuracy is low

Bluetooth [70] 100m 24 Mbps Low High throughput, reception range,
low energy consumption

Low localization accuracy, prone to
noise

Ultrasound [71] Couple-tens of
meters

30 Mbps Low-moderate Comparatively less absorption High dependence on sensor place-
ment

Visible Light [72] 1.4 km 10 Gbps [73] Relatively higher Wide-scale availability, potential to
provide high accuracy, multipath-
free

Comparatively higher power con-
sumption, range is affected by ob-
stacles, primarily requires LoS

SigFox [43] 50 km 100 bps Extremely low Wide reception range, low energy
consumption

Long distance between base station
and device, sever outdoor-to-indoor
signal attenuation due to building
walls

LoRA [43] 15 km 37.5kpbs Extremely low Wide reception range, low energy
consumption

Long distance between base station
and device, sever outdoor-to-indoor
signal attenuation due to building
walls

IEEE 802.11ah [43] 1km 100 Kbps Extremely low Wide reception range, low energy
consumption

Not thoroughly explored for local-
ization, performance to be seen in
indoor environments

Weightless 2 km for P, 3
km for N, and
5 km for W

100 kbps for
N and P, 10
Mbps for W

Extremely low Wide reception range, low energy
consumption

Long distance between base station
and device, sever outdoor-to-indoor
signal attenuation due to building
walls

H. Ultrasound

The ultrasound based localization technology mainly relies
on ToF measurements of ultrasound signals (>20KHz) and the
sound velocity to calculate the distance between a transmitter
and a receiver node. It has been shown to provide fine-
grained indoor localization accuracy with centimetre level
accuracy [76]–[78] and track multiple mobile nodes at the
same time with high energy efficiency and zero leakage
between rooms. Usually, the ultrasound signal transmission
is accompanied by an RF pulse to provide the necessary syn-
chronization. However, unlike RF signals, the sound velocity
varies significantly when humidity and temperature changes;
this is why temperature sensors are usually deployed along
with the ultrasound systems to account for these changes [79].
Finally, although complex signal processing algorithms can
filter out high levels of environmental noise that can degrade
the localization accuracy, a permanent source of noise may
still degrade the system performance severely.

Table III provides a summary of different wireless tech-
nologies from localization perspective. The maximum range,
throughput, power consumption, advantages and disadvantages
of using these technologies for localization are summarized.

IV. LOCALIZATION AND INTERNET OF THINGS

The rise of the Internet of Things (IoT) and connecting

billions of devices to each other is very attractive for indoor
localization and proximity detection. In this section, we pro-
vide a primer on IoT and intend to analyze how and if IoT
can impact or benefit indoor localization.

A. Primer on Internet of Things

The Internet of Things (IoT) is based on the fundamental
idea of connecting different entities or ‘things’ to provide
ubiquitous connectivity and enhanced services. This can be
achieved by embedding any thing with sensors that can
connect to the Internet. It is considered as one of the six
“disruptive civil technologies” by the US National Intelligence
Council (NIC) [4], [9]. IoT is poised to be fundamental part of
the projected 24 billion devices to be connected by the year
2020 [80] and will generate about $1.3 trillion in revenue.
IoT intends to improve the performance of different systems
related to health, marketing, automation, monitoring, park-
ing, transportation, retail, fleet management, security, disaster
management, energy efficiency, and smart architecture etc [4].
Indeed, it is expected that by 2025, IoT will be incorporated
into food packaging, home appliances and furniture etc. [81].
This indicates that the IoT is a technology for the future and
have potential for wide-scale adoption. However, augmenting
indoor localization into IoT will further enhance the wide
range of services that IoT can provide.
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Fig. 7. Fundamental building blocks of IoT

IoT basically can be divided into three components that
includes

1) Sensing/Data Collection: Different sensors or embedded
systems connected to the IoT network need to perform
a specific task such as sensing temperature, seismic
activities, user heart beat, speed of the car etc. The sensors
are the fundamental pillars of the IoT systems. These
are usually energy and processing power constrained
devices that are not primarily responsible for extensive
data processing. Indeed, most of the sensors sense and
transmit the data with minimal processing.

2) Data Communication: The data obtained through the
sensors need to be communicated to a central entity
such as a server, cluster head or intermediate node. This
can be achieved through a number of wired or wireless
technologies.

3) Data Processing: As IoT would consist of billions of
connected devices, the data generated by these devices
is going to be huge. Therefore, it requires extensive
processing such as data aggregation, compression, feature
extraction etc. to provide the user with valuable and
related data. This is usually done at a server, which then
makes the data available to the user. Figure 7 shows the
fundamental building block of an IoT system.

Cooperation among the connected device of the IoT network
is fundamental to its reliable and safe operation. Therefore
IoT is going to be highly heterogeneous network that will
leverage different communication and connectivity protocols
such as cellular, WiFi, Bluetooth, Zigbee, UWB, RFIDs, Long
Range Radio (LoRA) [43], Sigfox [43], [82] etc. Such a
heterogeneous network poses significant research challenges
as the amalgamation of different standards and technologies
requires careful deliberation and planning. IoT is still in its
relative infancy and is still evolving. Therefore, it has yet not
been thoroughly standardized. IoT is a single paradigm, but
there are a number of potential visions for future IoT that is
yet to be agreed upon [4]. There are a number of open research
issues in IoT details of which can be found in [4], [83]–[86].

By IoT radio we refer not only to the numerous recently

emerging IoT communication technologies, such as SigFox,
LoRa, WiFi HaLow, Weightless, NB-IoT, etc., but also to a
series of existing IoT-enabling wireless communication stan-
dards, such as BLE, WiFi, Zigbee, RFID and UWB, which
have been used for machine-to-machine communications. This
amalgamation of different and diverse technologies allows
thousands or millions of devices in IoT ecosystems to connect
and communicate in a seamless, yet efficient way. While
we discuss the type of services that localization can provide
by leveraging the IoT framework in Section VII, below we
present and analyse some of the challenges related the indoor
localization in IoT ecosystems.

• Privacy and Security: Location privacy is one of the
biggest concerns in relation to the use of mobile devices,
such as smartphones. Localization in IoT brings another
dimension to this problem. The user location can be now
correlated with the location of several IoT devices and
reveal far more personal information related to the users
health, mood, behaviour and habits. Even if the user does
not carry a mobile device, their location and behaviour
can be inferred by processing a sequence of data collected
by several and diverse IoT sensors in a close indoor
environment (e.g., processing the data from several IoT
devices located in different rooms in a smart house can
reveal the residents everyday habits and behaviour). The
appropriate methodology for data collection, processing,
encryption and storage to preserve and guarantee the user
privacy and anonymity in such environments remains an
open and very challenging problem. On the other hand,
in an industrial environment, the devices location and/or
movement may reveal potentially confidential informa-
tion related to the processes and techniques used by a
company to develop a specific product. Random change
of the MAC addresses or IDs of the IoT devices, known
only by the authorized network, together with appropriate
encryption can increase the privacy of the positioning.
Safety and security is another concern of paramount
importance related to IoT localization. Compromised
location information can be very critical for particular
IoT applications and services, such as health, structural
monitoring, defence, etc. For instance, in structural moni-
toring, a small change in the distance between two sensors
can indicate a severe stability issue of a building. In an
industrial setting, the movements of a heavy machinery
may depend on the precise calculation of its distance from
several IoT sensors. In defence related application, the
location of certain IoT devices must remain hidden to the
adversary. Although it is evident that localization infor-
mation tampering or exposure can be proven catastrophic
in many of the aforementioned scenarios, in several cases,
these devices have been designed considering only their
core functionality and not security.
Localization does not just create problems, but it can be
also proven highly beneficial to the security or several
IoT services and applications. Since, many IoT devices
are built to last for years, while they are deployed by the
end users rather than IoT service professionals, they tend
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to be placed and forgotten or unintentionally (or inten-
tionally) moved. Knowing the location of these devices
enable their recovery when needed. More importantly,
the change of a IoT device location may indicate that
the device has been compromised (e.g., stolen). In such
case, the device may automatically stop harvesting data
and delete any data already collected and stored on it. On
the other hand, localization may be used for the authenti-
cation of new IoT devices, e.g., IoT devices may allow to
interact only when they come into close proximity to each
other, in order to create trustable services. In other cases,
IoT devices may be allowed to communicate only when
they locate themselves in secure regions to minimize the
risk of potential malign transmission overhearing.

• Heterogeneity and diversity: IoT ecosystems normally
comprise a large number of heterogeneous, diverse and
constantly evolving assets and devices. Many of these
devices have not been designed/manufactured with local-
ization provisioning, so they can only be located by pas-
sively monitoring any data packets they transmit for com-
munication purposes. However, unlike traditional sensor
networks, within the same IoT ecosystem, devices may
use different wireless air interface protocols (e.g., SigFox,
LoRa, WiFi-HaLow, BLE, ZigBee, etc.) and different
versions of communication standards. Up to date, the vast
majority of existing localization systems are dealing with
a single air interface. Developing ubiquitous localization
solutions that simultaneously work with a wide variety of
wireless protocols is particularly challenging.
An alternative solution would be to either modify/enhance
the software/firmware of such devices to assist localiza-
tion or to attach supplementary localization sensors on
them. However, in IoT ecosystems (e.g., smart houses,
hospitals, industrial environments, etc.) different sets
of devices/networks may belong to different service
providers, end users or organizations. A service provider
that attempts the localization may not necessarily be the
owner of the IoT devices/network. In this case, access
to these devices to either modify/enhance their software
or firmware to assist localization or permission to attach
supplementary localization sensors on them, may not be
possible.
Moreover, since most of IoT devices have been built to
last for several year running on a single battery, they
must go through very long sleeping cycles. During these
cycles, no packets are transmitted, and the devices are
essentially undetectable. This poses significant limitations
on how frequently the location of these device can be
estimated and updated. Also, when they wake-up, they
normally transmit very short packets at low power with
minimum repetitions, which results to low signal-to-
noise-ration (SNR) and increases the localization error.
Depending on the underlying application and energy
constraints, the wake-up patterns may vary from device
to device, making the design and optimization of unified
localization solutions even more challenging.

• Network management and scalability: Interference man-
agement is one of the main challenges in IoT net-

works. When it comes to localization the additional sig-
nalling/packet transmission used explicitly for localiza-
tion may generate significant interference that can reduce
the efficiency and disrupt the communication operations
not only of the underlying IoT network but also of other
conventional networks operating in the same frequency
band(s). This is particularly critical in hospital envi-
ronments where the localization packets may interfere
and disrupt the operation of medical equipment. Note
that usually in IoT networks the data traffic is primarily
generated by a large number of very short and infrequent
transmission, therefore the proportion of the localization
overhead can be significant (especially if frequent lo-
cation updates are required) compared to the ongoing
data traffic. On the other hand (particularly for devices
operating in the ISM bands) interference generated by co-
existing (in space, time and frequency) communication
networks (e.g., WiFi) may affect the localization process
by causing packet collision or wrong measurements (in-
crease the SINR). Moreover, energy spent for localization
may decrease the battery life of many IoT devices and this
needs to be considered during the initial network panning.
Finally, many resource allocation and routing protocols
for IoT are based on the actual or relative location of the
IoT devices.

• Most IoT applications (particularly those that require
large number of sensors) seek a low per unit cost of
their IoT devices, which results in devices with very
limited hardware components, such as CPU, memory and
battery. Many of them are purpose made for a particular
application (e.g., data collection and transmission) and do
not allow for any software or firmware modifications for
localization purposes. For others, the low per unit cost
limits their computational power, as a result, advanced
signal processing algorithms cannot be used for local-
ization on the IoT device side. Many IoT devices are
small in size, which makes infeasible the use of multiple
antennas or antenna arrays. Embedded antennas like chip
and printed circuit board (PCB) are preferred instead,
since they have the benefit of fitting into small spaces,
but they suffer from low antenna gain and directivity
which highly affects the precision of many localization
techniques. Another constraint is related to their energy
efficiency. IoT devices are built to last on small batteries
for periods ranging from few to several years. Additional
signal transmissions to assist localization will drain the
battery faster and shorten their life expectancy.

Incorporating localization into IoT framework certainly will
help to provide a number of efficient solutions that would
improve the overall services provided to the users. However,
for that to happen, there is a need for extensive research to
find solutions to the aforementioned challenges

B. Emerging IoT Technologies
In the following, a number of emerging radio technologies

(primarily designed for IoT communication), which can be
potentially used for indoor localization will be presented and
briefly discussed.
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1) SigFox: Founded in 2009, SigFox is the first Low Power
Wide Area Network (LPWAN) network operator dedicated to
M2M and IoT. Designed to serve a huge number of active
devices with low throughput requirements, SigFox operates in
the unlicensed ISM radio bands and uses a proprietary Ultra
Narrow Band (UNB) radio technology and binary-phase-shift-
keying (BPSK) based modulation to offer ultra low data rate
(∼100 bits per second) and long range (up to 40 km in open
space) robust communication with high reliability and minimal
power consumption. By using UNB radio, the noise floor is
reduced (compared to classical narrow, medium or wide-band
systems); the resulting low reception power sensitivity allows
data transmission in highly constrained environments and the
ability to successfully serve a huge number of active nodes
deployed over a large area with a very small number of base
stations. Nevertheless, the ultra narrowband nature of SigFox
signal makes it susceptible to multipaths and fast fading, which
together with the long distance between base stations and
devices make the RSS resolution insufficient for localization
use.

2) LoRa: LoRaWAN is an open Medium Access Control
(MAC) protocol which is built on top of the LoRa physical
layer (a proprietary radio modulation scheme based on Chirp
Spread Spectrum (CSS) technology). LoRaWAN is designed
to provide long-range, low bit-rate communications to large-
scale IoT networks and has been already adopted by several
commercial (LPWAN) platforms. The uniqueness of LoRa,
compare to other IoT technologies, is the use of CSS mod-
ulation, a spread spectrum technique where the signal is
modulated by frequency varying sinusoidal pulses (known as
chirp pulses), which is known to provide resilience against
interference, multipath and Doppler effects. These attributes
makes CSS an ideal technology for geolocation, particularly
for devices moving at high speed, and it was one of the
proposed PHYs for the IEEE 802.15.4 standard. However, the
bandwidth considered in IEEE 802.15.4 was 80MHz, which is
much wider than the typical 125, 250 and 500kHz LoRaWAN
bandwidth values. This fact, together with the long-range
between the server and the device (i.e., 2-5 km in urban
and 15 km in suburban areas), make difficult the multipath
resolution and highly reduce the geolocation accuracy of
LoRaWAN. Although an ultra-high resolution time-stamp to
each received LoRa data packet has been recently introduced
by LoRa for TDOA based localization, indoor accuracy cannot
be achieved unless additional monitors are deployed in the
indoor environment where the devices/users of interest are
located [87]. As suggested by LinkLabs’s report [87], using
a hybrid approach such as combining GPS-LoRa can achieve
better localization accuracy.

3) IEEE 802.11ah: The IEEE 802.11ah, also known as
WiFi HaLow, is an IEEE standard specification primarily
designed for IoT devices and extended range applications. It
is based on a MIMO-OFDM physical layer and can operate
in multiple transmission modes in the sub-gigahertz license-
exempt spectrum, using 1, 2, 4, 8 or 16MHz channel band-
width. It can operate in multiple transmission modes, from
low-rate (starting from 150 Kbps) able to provide whole-house
coverage to battery operated IoT devices, such as temperature

and moisture sensors; to high-rate (up to 346 Mbps) modes,
able to support plug-in devices with power amplifier, such
as video security cameras. Its shorter-range network archi-
tecture together with the significantly lower propagation loss
through free space and walls/obstructions due to its lower
operation frequency (compared to LoRa and SigFox), makes
IEEE 802.11ah a good candidate IoT technology for indoor
localization. Moreover, in contrast with the aforementioned
IoT technologies, WiFi HaLow does not require a proprietary
hardware and service subscriptions, since off-the-shelf IEEE
802.11ah routers are only needed.

4) Weightless: Weightless is a set of open wireless tech-
nology standards developed and coordinated by a non-profit
group, the Weightless Special Interest Group (SIG), that aim
to deliver wireless connectivity for low power, wide area
networks specifically designed for the IoT [88]. Currently,
there are three published Weightless connectivity standards:
Weightless-N is an uplink only, ultra-narrowband technology
(very similar to SigFox) that operates in the sub 1GHz license
exempt Industrial, Scientific and Medical (ISM) bands. It uses
differential BPSK modulation and can deliver 30 kbps to 100
kbps data rate in 3 km range.
Weightless-W exploits the unused ultra-high frequency (UHF)
TV white-space (TVWS) spectrum. It can deliver 1 kbps to 10
Mbps data rates in 5 km range (depending on the link budget)
and can support several modulation schemes with frequency
hopping and a wide range of spreading factors.
Weightless-P is a bi-directional, relatively narrowband (12.5
kHz channels) technology, which is the main focus of the
Weightless SIG [ref]. Although it can operate in any frequency
band, it is currently defined for operation in the license exempt
sub-GHz ISM bands. It is using a non-proprietary physical
layer based on Gaussian minimum shift keying (GMSK) and
quadrature phase shift keying (QPSK) modulation, which can
offer 0.2 kbps to 100 kbps data rate in 2 km range.
None of the aforementioned Weightless standards have any
built-in localization capability. Although TDOA, RToF or RSS
based techniques, described in the previous section, can be
used to process the receiving signal for localization purposes,
the truth is that the long distance between base stations and
IoT devices together with the multipaths, and severe signal
attenuation through building walls render them insufficient for
localization use.

It becomes evident that although many IoT services will
require seamless and ubiquitous indoor/outdoor localization
and/or navigation of both static and mobile devices, long-
range IoT technologies have not been designed with indoor
localization provision. The main issues are (i) the long distance
between the base stations and the IoT devices, and (ii) the
severe signal attenuation and multi-paths due to the inter-
ruption of the outdoor to indoor communication channel by
building walls. Even for the ‘lucky’ IoT devices, located within
a couple hundred meters from a base station, reasonable indoor
localization accuracy is not possible. This is why if accurate
indoor localization is required by the underlying application
or service, the cooperation between short- and long-range
IoT technology will be necessary. The aforementioned long-
range technologies can provide low granularity, global location
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information (e.g., in which building the device is located)
while the short-range technologies, such as Bluetooth, Zigbee,
WiFi, UWB, RFID, etc., will provide high granularity, local
information (e.g., where exactly in the building this device
is located). The combination of these two measurement can
provide an accurate estimation of the device location within
the communication cell.

A summary of the aforementioned emerging IoT technolo-
gies from a localization perspective has been included in Table
III

V. EVALUATION FRAMEWORK

In this section, we discuss the parameters that we include
as part of our evaluation framework. We believe that for a lo-
calization system to have wide-scale adoption, the localization
system must be readily available on user devices, should be
cost efficient, energy efficient, have a wide reception range,
high localization accuracy, low latency and high scalability.
However, it is worth noting that the systems are application
dependent and might not be required to satisfy all these
metrics. Below we discuss each of them in detail.

A. Availability

One of the fundamental requirements of indoor localization
is to use a technology that is readily available on the user
device and does not require proprietary hardware at the user
end. This is important for the wide scale adoption of the
technology. UWB based systems have proven to provide 10-20
cm accuracy [9], however, most of the current user devices do
not have UWB chip. Similarly, approaches based on Synthetic
Aperture Radar (SAR) might also require additional sensors.
Therefore, it is important to obtain localization systems that
can work smoothly with widely available devices such as smart
phones. Currently, the widely used technology is WiFi, which
is readily available on almost all user devices. Similarly visible
light and Bluetooth can be used as other viable alternatives.

B. Cost

The cost of localization system should not be high. The ideal
system should not incur any additional infrastructure cost as
well as do not require any high end user device or system that
is not widely used. The use of proprietary RNs/hardware can
improve the localization accuracy, however it will certainly
result in extra cost. While larger companies might be able
to afford them, smaller businesses are constrained mostly in
terms of such costs. Therefore, we believe that the localization
system can easily penetrate the consumer market and be
widely adopted by keeping the cost low.

C. Energy Efficiency

Energy efficiency is of primary importance from localization
perspective [89], [90]. The goal of localization is to improve
the services provided to the users. Any such system that
consumes a lot of energy and drains the user device battery
might not be widely used. This is because localization is an

additional service on top of what the user device is primar-
ily intended for i.e. communication. Therefore, the energy
consumption of the localization system should be minimized.
This can be achieved by using technology such as BLE that
has lower energy consumption or offloading the computational
aspect of the localization algorithm to a server or any entity
which has access to uninterrupted power supply and has high
processing power. The fundamental trade off is between the
energy consumption and the latency of the localization system.
Possible factors that can influence the energy consumption of
any localization system are

• Periodicity: The interval or frequency of transmitting the
beacon or reference signal for localization significantly
affects the energy efficiency, accuracy and latency of the
system. The higher the frequency, the higher will be the
energy consumption and accuracy.

• Transmission Power: Transmission power also plays a
fundamental role in the energy consumption. The higher
the signal power, the higher will be the reception range of
the localization system and the lower will be the energy
efficiency. While transmitting power might not be a major
source of concern for MBL systems where the anchor or
reference nodes might have access to continuous power
and might not rely on the any battery, it is still useful
from IoT perspective to optimize the transmission power
to obtain a highly accurate but low energy consuming
localization system. Another important factor to consider
when dealing with transmission power is the interference.
Signals from different reference nodes or the user devices
might interfere with each other.

• Computational Complexity: Computational complexity of
the localization algorithm is also important to take into
account. Running a highly complex algorithm on the user
device will drain its power source and despite high accu-
racy, the system might still not be favorable. Therefore, it
is important to design algorithms and mechanism which
are not computationally complex. As mentioned earlier,
the computation complexity can be offloaded to a server
at the cost of added delay or latency.

D. Reception Range

The reception range of the used technology for localization
is also of primary importance in evaluating any system. An
industry standard localization system should have a reasonable
range to allow better localization in large spaces such as office,
hospitals, malls etc. Higher range also means that the number
of anchor points or reference nodes required would be low and
it will result in cost efficient systems. However, an important
aspect to consider is the interference and performance degrada-
tion with increase in distance between transmitter and receiver.
The choice of the reception range depends on application and
the environment in which the localization system is to be used.

E. Localization/Tracking Accuracy

One of the most important features of the localization
system is the accuracy with which the user/device position
is obtained. As mentioned earlier, indoor environments due
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to presence of obstacles and multipath effects provide a
challenging space for the localization systems to operate in.
Therefore, it is important for the system to limit the impact
of multipath effects and other environment noises to obtain
highly accurate systems. This might require extensive signal
processing and noise elimination that is a highly challenging
task. The localization system should be able to locate the
user or object of interest ideally within 10 cm (known as
microlocation [9]) accuracy.

F. Latency/Delay

Real-time localization requires that the system should be
able to report user location and coordinates without any notice-
able delay. This means that the system should be able to locate
user with a small number of reference signals and should
perform complex operations with milliseconds granularity.
This is a significant constraint as larger number of reference
signals mean obtaining a highly reliable position estimate.
However, to report results in real-time, use of extensive signal
measurements is not possible. Similarly, the use of complex
and time consuming but effective signal processing techniques
is also not viable. Therefore, there is a need for optimized
signal processing, which should eliminate noise and provide
user location with no noticeable delay.

G. Scalability

The localization system needs to be scalable, i.e., it should
be able to simultaneously locate or provide services to a
large number of users in a large space. Scalability is a major
challenge to MLB systems when compared with DBL systems
as DBL usually happens on the user device, which is not
limited by other user devices. However, MBL happens on
some monitor or server that is responsible for simultaneously
facilitating hundreds of users at a time (in malls, hospitals,
sports arenas etc.).

The above factors are important in evaluating any localiza-
tion system. We do not define any threshold for these metrics
as we believe it depends on application and the scale of
deployment along with the organization that is utilizing the
localization system. Ideally, there will be a localization system
that can satisfy all the above requirements. To the best of our
knowledge, there is no such system proposed as of now that
satisfies all of these requirements. However, recently some
systems have been proposed in the literature that do satisfy
majority of the requirements. In the next section, we discuss
some of the proposed systems in the literature and evaluate
them using our proposed framework.

VI. LOCALIZATION SYSTEMS

In this section, we describe some of the proposed indoor
DBL and MBL techniques in the literature. We broadly
classify the systems as either device based or monitor based
localization and evaluate/compare them from the perspective
of energy efficiency, cost, availability, latency, reception range,
localization accuracy, and scalability.

A. Monitor based localization

We primarily classify the MBL systems based on the
wireless technology used.

1) WiFi based MBL: Bahl et al. present RADAR [91], which
is one of the pioneering work that uses RSSI values of the
user device to obtain an estimate of the user location [30].
During the offline phase,the APs collect RSSI values from the
user device that are used to build a radio map. In the online
phase, the obtained RSSI values are matched with the offline
RSSI values to infer user location. RADAR achieves a median
localization accuracy of 2.94 meters (m). Guvenc et al. [92]
apply Kalman filter to improve the localization accuracy of a
system that uses RSSI from WiFi APs. The authors use RSSI
fingerprinting in the offline phase to infer about the position
using the RSSI in the online phase. Moving average based
system is also compared with Kalman filter to highlight the
accuracy attained by a Kalman filter. A median accuracy of
2.5 m is attained.

Vasisht et al. propose Chronos [20] that is a single WiFi
access point (AP) based MBL system. Chronos uses ToF
for accurate localization. The AP receives certain beacon
messages from the user device that are used to calculate
the ToF. Since accurate localization requires accurate esti-
mation of ToF (order of nanoseconds), Chronos employs the
inverse relationship between bandwidth and time to emulate
a wideband system. Both the transmitter and receiver hop
between different frequency bands of WiFi, resulting in differ-
ent channel measurements. The obtained information is then
combined to obtain an accurate ToF estimate. Once the ToFs
are accurately computed at the AP, they are then resolved
into distances between each antenna pair on AP and user
device (thus both AP and client must be MIMO devices). The
measured distances are then used to obtain the 2D locations
relative to the AP through an error minimization process (error
between measured and expected distances) that is subject to
geometric constraints imposed by the antennae’s location on
each device. While Chronos attains a median accuracy of 0.65
meters, it is not scalable and seems to consume a lot of energy
to sweep across different frequencies.

Kotaru et al. [23] propose SpotFi that uses CSI and RSSI to
obtain an accurate estimate of AoA and ToF, which are used
to obtain user location. SpotFi achieves a median localization
accuracy of 40 cm using standard WiFi card without the need
for any expensive hardware component or fingerprinting. The
signals emitted from the user device towards the AP are used
to obtain a fine estimate of the AoA using only a limited
number of antennas on the AP. An important observation of
SpotFi is that multipath not only affects the AoA of the signal
across various antennas but also the CSI across different WiFi
subcarriers (due to different ToF). To account for this, SpotFi
uses joint AoA and ToF estimation algorithms by employing
the CSI information. While the system attains a high accuracy
using WiFi APs, it is not suitable for real-time MBL because
it cannot calculate position estimate with limited number of
signals.

Xiong et al. [22] propose ArrayTrack, which relies on
accurate AoA calculation at the WiFi AP to estimate user
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position. It requires comparatively larger number of antennas
than SpotFi, however it attains an improved median localiza-
tion accuracy of 23 cm. ArrayTrack detects the packets at the
AP from different mobile user devices, however, it needs to
listen to a small number of frames that can be either control
frames or data frames (10 samples are used which in time
domain accounts to 250 nanoseconds of a packet’s samples).
Currently it uses short training symbols of the WiFi preamble
for detection purposes. ArrayTrack synthesizes independent
AoA data from the antenna pairs. For accurate AoA spectrum
generation, ArrayTrack uses a modified version of the Multiple
Signal Classification (MUSIC) algorithm proposed in [93].
As MUSIC algorithm without any modification would result
in highly distorted AoA spectra, ArrayTrack uses spatial
smoothing [94] that averages incoming signals across different
antennas on the AP. To suppress multipath effects, ArrayTrack
relies on the fact that the direct LOS component does not vary
drastically across different collected samples while the false
peaks or multipath signals do. The obtained AoA spectrum
is then used to estimate the user/device location. While Ar-
rayTrack attains a high localization accuracy in real-time and
is scalable, the requirement for higher number of antennas is
one of its fundamental limitations. Also, it is yet to be seen if
the proposed approach can work with commodity off-the-shelf
WiFi APs.

Phaser [95] is an extension of the ArrayTrack that works on
commodity WiFi and uses AoA for indoor localization. Phaser
uses two Intel 5300 802.11 NICs, each with three antennas
whereas one antenna is shared between the two NICs resulting
in total 5 antennas. To share the antenna, Phaser efficiently
synchronizes the two NICs. Phaser achieves a median accuracy
of 1-2 meter, which does not satisfy the sub-meter accuracy
required for indoor localization. ToneTrack [29] uses ToF
data to obtain a real-time estimate of user location with
a median accuracy of 0.9 meters. ToneTrack combines the
ToF data obtained from the channel or frequency hopping
of the user device. The channel combination algorithm helps
in combining the information from different channels which
helps in attaining a fine time resolution suitable for indoor
localization. To account for the multipath effects and the
absence of LoS paths, ToneTrack uses a novel spectrum
identification algorithm that helps in identifying whether the
obtained spectrum contains valuable information for localiza-
tion. Furthermore, by using the triangle inequality, ToneTrack
discards those measurements obtained from the WiFi AP that
do not have an LoS path to the user device. Numerical results
show that ToneTrack can provide fairly accurate and real-time
measurements. In terms of the basic principles, Chronos [20]
and ToneTrack [29] rely on the same underlying principle of
combining information from different channels. ToneTrack is
tested with proprietary hardware and it is yet to be seen if it can
work with the existing off-the-shelf WiFi cards. Wang et al.
[96] proposed a deep learning basd indoor CSI fingerprinting
system. The authors use an off-line training phase to train the a
deep neural network. In the online phase, probabilistic method
is used to estimate the user’s location. An average localization
error of as low as 0.9 meters is obtained. Luo et al. [97] present
Pallas that relies on passively collecting RSSI values at Wi-Fi

APs to obtain user location. The system thrives on passively
constructing Wi-Fi database. Pallas initially obtains landmarks
present in the Wi-Fi RSS traces, which when combined with
the indoor floor plan and location of the Wi-Fi APs is used to
map the collected RSS values to indoor pathways.

Carrera et al. [98] proposed a dicriminative learning based
approach that combines WiFi fingerprinting with magnetic
field readings to achieve room level detection. Then the
landmark detection is combined with range based localization
models and and graph based discretized system state to refine
the localization performance of the system resulting in a
localization error as low as 1.44m.

2) UWB based MBL: Ubisense [99] is one of the widely
known UWB based MBL system. Ubisense attains an accuracy
as high as 15 cm, which is why it is widely used in industries
and as a commercial solution. However, cost is one of the
leading constraints of Ubisense. Krishnan et al. [100] propose
a UWB-Infrared based MBL system for robots that can also
be used by other entities. UWB readers are placed at known
locations and the UWB transmitter attached to the robot
transmit UWB pulses, which are then picked up by the UWB
readers. TDoA is then used to obtain an estimate of the robot’s
location. The system accurately tracks a user with root mean
square (RMS) error of 15 cm. Shen et al. [101] uses UWB
technology for MBL of different objects. The receivers and
the transmitter are time synchronized so the system relies on
ToF rather than TDoA. The authors assume that the ranging
error follows a Gaussian distribution. For MBL, the authors
rely on a Two-Step, Expectation Maximization (TSEM) based
algorithm that attains the Cramer-Rao lower bound for ToF
algorithms. The efficiency of the algorithm is verified using
simulations that show that error variance is about 30 dB lower
than the existing TDoA based approaches. Xu et al. [102] use
TDoA and UWB for locating different blind nodes or users
in an indoor setting. The authors take both LoS and NLoS
measurements into account and use a TDoA error minimizing
algorithm for estimating the location of the user with respect
to fixed RNs.

3) Acoustics based MBL: Mandal et al. [103] present Beep,
which is an acoustic signal based 3D MBL system. Different
acoustic sensors are placed in an indoor environment. The
acoustic sensors are connected to a central server through WiFi
network. The user device that wants to obtain its position
requests position services. Following the request, the device
synchronizes itself with sensors through the WiFi network
and transmits a predefined acoustic signal. The sensors use the
acoustic signal to calculate the ToF and then map into distance.
The distances from all the sensor nodes are then reported
to a server that applies 3D multi-lateration for obtaining an
estimate of the user location which is then reported to the
user using the WiFi network. The proposed system attains an
accuracy of about 0.9m in 95% of the experiments. While the
proposed system is accurate and seems scalable, its energy
efficiency, and latency needs to be evaluated.

Peng et al. [104] propose BeepBeep that is an acoustic signal
based ranging system. The proposed system can be used for
proximity detection system rather than tracking since the au-
thors have only used it for ranging. The novelty of BeepBeep
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is that it does not require any proprietary hardware and relies
on a software to allow two commodity off-the-shelf devices do
ranging to estimate their proximity. Both devices emit special
signals called “beeps” while simultaneously recording sounds
through its microphone. The recording contains the acoustic
signal of itself as well as the other device. The number of
samples between the beep signals is counted and the time
duration information is exchanged, that is then used for the
two way ToF. This results in highly accurate ToF and provides
a good estimate of the proximity between the two devices. The
reception range of BeepBeep might be a significant problem
in large spaces. Furthermore, it is yet to be explored for
localization.

4) RFID based MBL: Ni et al. propose LANDMARC [105]
that uses active RFIDs to track the user location. Different
RFIDs tags are placed in an indoor environment that serve as
RNs. The object to be tracked such as a user device is equipped
with a tracking tag while the RN measures the signals transmit-
ted by the tracking tag. The RNs are also equipped with IEEE
802.11b card (Wi-Fi) to communicate with an MBL server.
The RNs measure the signal strength of the tracking device to
estimate the device’s location. While LANDMARC is energy
efficient and has long range, it has higher tracking latency
and has a median accuracy of 1 meter. LANDMARC is also
computationally less efficient and requires higher deployment
density for achieving improved localization performance. To
address these two problems, Jin et al. [106] propose an
efficient and more accurate indoor localization mechanism that
accounts for the weaknesses of LANDMARC. Rather than
relying on the measurements between all the reference tags and
the tracking tag, the authors only choose a subset of reference
tags based on certain signal strength threshold. This reduces
the complexity and improves the localization accuracy.

Wang et al. propose RF-Compass [107] that utilizes RFIDs
on a robot to track the location of different objects which have
RFIDs attached to them. RF-Compass relies on a novel space
partitioning optimization algorithm to localize the target. The
number of RFID tags on the robot reflects the number of space
partitions, therefore an increase in the number of RFIDs tags
would certainly restrict the target to a small region, hence
improving localization accuracy. Furthermore, the increased
number of RFIDs on the robot also helps in calculating the
device orientation. RF-Compass has a median localization
accuracy of 2.76 cm. Wang et al. also propose PinIt [108] that
uses Multipath Profile of RFID tags to locate them. PinIt can
work efficiently even in the absence of LoS and the presence
of different multipath. Reference RFID tags serve as RNs
while the multipath profile is built by emulating an antenna
array through antenna motion. PinIt works like a proximity
detection system that queries the desired RFID tag (attached
to the object of interest) and its surrounding tags to locate it.
While a median accuracy of 11 cm is attained, PinIt is not
widely deployable due to the absence of RFID on majority of
the user devices. Furthermore, it can not be used for typical
MBL systems.

5) BLE based MBL: Gonzalez et al. [109] present a Blue-
tooth Location Network (BLN) that uses Bluetooth RNs to
track the location of a user in an indoor setting. The Bluetooth

enabled user device communicates with the Bluetooth RNs,
which then transmits the user location information to a master
node. The master node is connected to service servers. The
BLN system is inspired from typical cellular networks and
attains a room level accuracy i.e. it is more suitable for
proximity based services. The system has a response time of
about 11 seconds which makes it non real-time.

Bruno et al. [110] present a Bluetooth based localization
system called Bluetooth Indoor Positioning System (BIPS).
The proposed system has a short range (less than 10m)
and is energy efficient. A Bluetooth enabled user device
communicates with fixed Bluetooth RNs that then use a BIPS-
server for obtaining an estimate of the user location. All the
RNs are interconnected through a network so that they can
communicate information to each other. The main tasks of the
RNs are a) to act as master nodes and detect the slave (user
devices) within its vicinity b) transfer data between the users
and the RN. BIPS can obtain the position of the stationary or
slow moving users in an indoor setting. The authors comment
on the latency and delay of the system, however, the results do
not comment on the localization accuracy. In terms of latency,
BIPS system is not feasible for real-time tracking.

Diaz et al. [111] present a Bluetooth based indoor MBL
system called Bluepass that utilizes RSSI values from the
user devices to compute the distance between the device and
the fixed distributed Bluetooth receivers. Bluepass consists of
a central server, a local server, a Bluetooth detection device
and a user device application. User must have the application
installed on the device and should login to utilize the MBL
system. The local server is for a single map while the central
server intends to link different maps. A mean square error
(MSE) as low as 2.33m is obtained.

Zafari et al. [57] utilize iBeacons for indoor localization
services. The RSSI values are collected from different iBea-
cons on a user device, which forwards the values to a server
running different localization algorithms. On the server side,
Particle Filter (PF), and novel cascaded approaches of using
Kalman Filter-Particle Filter (KF-PF) and Particle Filter-
Extended Kalman Filter (PF-EKF) are used to improve the
localization accuracy of the system. Experimental results show
that on average, PF, KF-PF and PF-EKF obtains accuracy
of 1.441 m, 1.03 m and 0.95 m respectively. While the
system is energy efficient and accurate, it incurs significant
delay and requires the deployment of iBeacons, which incurs
additional cost. Ayyalasomayajula et al. [112] propose a CSI
based localization systems with BLE technology, which to
best of our knowlede is the first work that does so. Since the
nature of BLE makes it challenging to use CSI, the authors
have proposed BLE-compatible algorithms to address different
challenges. An accuracy as large as 86cm is achieved. Islam
et al. [113] propose a novel multipath profiling algorithm to
track any BLE tag in an indoor setting. The proposed technique
has a ranging error of about 2.4m.

6) Ultrasound MBL: Ashokaraj et al. [114] propose a
deterministic approach called interval analysis [115] to use
ultrasonic sensors present on a robot for its localization
and navigation in a 2-Dimensional (2D) environment. The
proposed approach assumes that the map is already available.
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While methods such as Kalman Filters (KF) or Extended
Kalman Filters (EKF) [116]–[118] are widely used for robot
localization, the data association step of such methods is
highly complex and usually requires linearization. The pro-
posed method bypasses the data association step and does
not require any linearization. The authors provide simulation
based results. Furthermore, the paper does not comment on the
localization accuracy, latency and scalability of the proposed
approach. It is also worth mentioning that the proposed ap-
proach relies on the robot’s movement and velocity prediction
or estimation 8.

The BAT indoor MBL system proposed in [119] and exper-
imentally evaluated in [120] uses ultrasonic signals for indoor
localization. Due to lower speed of the sounds waves in the air
(330 m/s), the accuracy of the localization system significantly
improves when compared with other technologies. In a BAT
system, the devices to be tracked are provided with proprietary
transmitters. The receivers, whose positions are fixed and
known, receives the transmitted signal and use it for location
estimation of the user. BAT requires the transmitters and
receivers to be synchronized. BAT receives an accuracy as
high as 3 cm in a 3D space [30], however due to the use
of ultrasound, its accuracy is very sensitive to the placement
of sensors. Furthermore, it requires a lot of dedicated anchor
nodes which is costly.

Cricket indoor localization system [121] uses a combination
of RF and ultrasonic signals for indoor localization. It is
complementary to the Bat system as it uses the radio signal
only for synchronizing the receivers. Cricket does not require
any synchronization between the receiver and transmitter. It
achieves an accuracy of 10 cm [30], however it requires
dedicated hardware and is limited in range due to the use
of ultrasonic technology. It is worth mentioning here that
modern MBL systems highly rely on ubiquitous technologies
such WiFi, BLE, and Visible light because they are readily
available. However, most of the user devices lack the capability
to produce Ultrasonic signals, which is why there are lesser
Ultrasound based MBL systems.

7) Visible Light based MBL: Di Lascio et al. propose
LocaLight [122] that uses visible light for MBL. Different
RFID sensors are placed on the floor that detect the decrease
in the light intensity due to the shadow of the user. The RFID
sensors have photodiodes, which is why the system does not
rely on any battery or power supply. Under specific settings
i.e. the height of the LEDs, the radius of the light zone and
height of individuals, the system achieves an accuracy of 50
cm. However, as the RFID sensors need to harvest energy,
the system cannot work in real time. Similarly, the system is
more suitable for proximity detection than for actual MBL as
the system has no information about the user, but detects if
any individual is within close vicinity of the light. It is worth
mentioning here that visible light based localization systems
are attractive. However, it is highly unlikely due to energy and
hardware limitations that the user device can transmit visible
light for MBL.

8Velocity estimation or prediction is also known as dead-reckoning

B. Device based Localization

We primarily classify the DBL systems based on the wire-
less technology used. Below we discuss some of the existing
DBL systems.

1) WiFi based DBL: Lim et al. [25] present an RSSI based
localization system (the system can also work in an MBL
mode) that does not require any offline RSSI fingerprinting
phase. WiFi APs, whose position are known a priori serve as
the RNs. The APs obtain the RSSI values from other APs that
assist in creating an online RSSI map. So the client or the
infrastructure measures the RSSI between the client and APs,
which is then mapped to distance and used for estimating the
user location. While the proposed approach attains a median
accuracy as high as 1.76 meters, it requires extra infrastructure
(wireless monitors for improving the system performance)
that incurs extra cost. Furthermore, the algorithm requires a
number of samples to obtain an estimate of the user location,
which can incur delay.

Youssef et al. [38] propose Horus, which is a WiFi based
localization system that relies on RSSI. Horus is a software
system on top of the WiFi network infrastructure that relies
on fingerprinting to obtain a radio map of the environment
during the offline phase. Then using probabilistic technique in
the online phase, it provides an estimate of the user location.
The offline phase in Horus involves building the radio map,
clustering different radio map locations (to reduce complexity)
and pre-processing of the signal strength models to account
for the spatial and temporal variations in the wireless channel
characteristics. While a median accuracy as high as 39 cm is
obtained for one of the test beds, Horus relies on fingerprinting
and training before it can be used. This makes it highly
sensitive to the changes in the environment.

Kumar et al. [21] propose Ubicarse, which is a WiFi based
localization system that uses a novel formulation of (SAR) on
a user device to accurately locate a user within an indoor en-
vironment by emulating large antenna arrays. Ubicarse works
with user devices that have at least two antennas. The user
should rotate the device to emulate SAR as the basic principal
is to take snapshots of the wireless channel while the user
rotates the device in a certain trajectory. The channel snapshots
help in obtaining accurate AoA information that the device
can use for accurate localization. The proposed formulation
is translation resilient and only relies on angular motion.
Ubicarse attains a median localization accuracy of 39 cm in
3D space. Furthermore, by employing stereo vision algorithms
and the camera on the user device, Ubicarse can provide
accurate geotagging functionality. Ubicarse can provide the
global coordinates of the user device while the camera and
stereo vision algorithms help to localization different objects.
A combination of them provides an accurate global location
for different PoIs, which do not have any electronic tag.
While Ubicarse has high localization accuracy, it is evident
that emulating large antenna arrays will strain the user device
battery. Furthermore, it is not always possible for the user
device to have multiple antennas. Also the requirement to twist
the device for emulating large antenna arrays means that if the
device is lost or in an inaccessible zone, then it is not possible
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to locate it.
Biehl et al. [123] present LoCo that uses WiFi AP and

a proprietary framework to obtain a room level classifier. A
classifier is first trained during offline phase using the RSSI
values from the WiFi APs using ensemble learning methods
called boosting [124]. During the online phase, the collected
RSSI values on the user device are then used to estimate
the user’s probable location. While the proposed framework
is energy efficient and will not drain the device battery, the
framework can also be implemented on a cloud-as-a-service
that the user device can connect to for obtaining its location.
The system might be useful for proximity based systems, it
cannot be used for many of the localization applications such
as indoor navigation or augmented reality (AR).

Bolliger et al. [125] propose Redpin that relies on finger-
prints of RF signals (WiFi, cellular, Bluetooth) to localize
users to a room level accuracy which makes it more suitable
for PBS. Redpin runs on user mobile phones and follows
the basic principles of RADAR [91]. Rather than utilizing
the traditional fingerprinting and training mechanism, Redpin
relies on folksonomy-like approach that allows the users to
train the Redpin system while utilizing its service. Redpin
uses collaboration among users and allows users to create
and modify location information. When the user launches the
application on his device, the application during its initializa-
tion phase called sniffing, collects RSSI value of the active
cellular (GSM was the system used in the paper) cell, WiFi
APs and the ID of all the Bluetooth devices. The collected
RSSI values are then forwarded to a server which attempts
to estimate user position using the existing RSSI values at
the server. If the location is known, it is reported to the
user, otherwise the system reports the last known location and
continuously obtains measurements to obtain user location.
Redpin relies on the sniffer module (that runs on the user
device) to obtain the RSSI values while the locator module
(that runs on a server) assists in obtaining the user location
estimate using the measurements from the sniffer. While the
proposed system eliminates the need for training, it doesn’t
fulfill the requirements of indoor navigation. Furthermore, the
reliance on RSSI may result in lower proximity detection
accuracy. The comparison between Redpin and LoCo in [123]
shows that LoCo is more accurate and has lower latency than
Redpin. This is probably due to the reliance of Redpin on the
user collaboration as well as the time taken to complete the
map (the author’s experiment showed that it took one day to
complete the map).

Martin et al. [126] present an Android application that relies
on fingerprinting and RSSI values from the WiFi APs to report
to a user, his location on the device. The approach is one
of the first approaches to utilize the same device for offline
and online phases of the fingerprinting. The authors claim
that the proposed system attains an accuracy as high as 1.5m.
Ding et al. [127] present a Particle Swarm Optimization (PSO)
based approach for location estimation. A novel AP selection
algorithm is used to improve the localization accuracy. To
refine the accuracy of the system further, Kalman filter is
applied to update the initial location estimation. However, the
approach seems energy expensive, non-real time and cannot

provide sub-meter accuracy. Ding et al. [128] also present a
localization system that relies on a novel empirical propagation
model. Sparse fingerprints are collected from different APs
which are then used to divide the whole localization space into
sub-regions. The proposed propagation model is then used to
entirely recover the fingerprint. The fingerprint values are then
used to estimate the user location by applying weighted kNN
algorithm. However, the proposed approach cannot obtain sub-
meter accuracy.

2) UWB based DBL: Marano et al. [129] provide extensive
insight into the performance of UWB radios in an indoor
environment. FCC-compliant UWB transceivers are exper-
imentally evaluated to understand the impact of Non-LoS
(NLoS) scenarios. The results of the experiments are used to
develop a better understanding of the UWB signal propagation
in an indoor environment. The extracted features are then
combined with regression analysis and machine learning to
classify whether an obtained signal is LoS or NLoS. This
also helps in reducing the ranging error that arises due to
NLoS. Ridolfi et al. [130] present a WiFi Ad-hoc system
that improves the coverage and scalability of UWB based
indoor localization system. The authors propose implementing
a UWB based localization system on top of an Ad-Hoc
WiFi mesh network. The proposed approach uses the high
connectivity and throughput of WiFi, and the accuracy of
UWB for a reliable localization system that does not require
any existing backbone network. The proposed framework can
support 100 users simultaneously with very small roaming
delay.

Rabeah et al. [131] discuss the problem of blocked LoS in
an indoor environment such as a warehouse where the presence
of storage racks as well as different impediments greatly
influence the presence of LoS. The authors obtain the blocking
distribution which can then be used for accurate localiza-
tion. Yu et al. [132] analyze the performance of UWB and
ToF based localization using direct-calculation and Davidson-
Fletcher-Powell quasi-Newton algorithm. The authors show
that both these methods do not rely on any information related
to ToF estimation error distribution or variance.

3) Acoustics based DBL: Guogou [74] is an acoustic
signals-based indoor localization system that requires specific
RNs that can transmit acoustic signals, which cannot be
perceived by human beings. On the user device side, the
microphone uses novel advanced signal processing techniques
to receive the acoustic signals from the RN that is then used for
localization. Gougou can identify the NLoS signals that helps
in improving the overall localization accuracy. The median
localization accuracy achieved ranges between 6-25 cm [30].
However, the reliance on proprietary acoustic RNs, the shorter
range of acoustic signals and the effect of sound noise on the
performance of Guogou makes it unsuitable for a ubiquitous
localization system. Huang et al. [133] present WalkieLokie
that relies on acoustic signals measurement on the user device
to calculate the relative position of different entities in the sur-
roundings. WalkieLokie requires the user device to be outside
the pockets so that it can receive inaudible acoustic signals
from specific RNs or speakers that are primarily intended for
marketing and advertisements. While WalkieLokie does not
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provide the exact location, it is suitable for proximity and
relative position based services. Due to the use of acoustic
signals, the range of the system is limited to less than 8 m.
However, the use of extra RNs can be used to improve the
range. To improve the localization accuracy, the authors utilize
novel signal processing algorithms and methods to obtain a
mean ranging accuracy of 0.63 m.

4) RFID based DBL: Shirehjini et al. [134] propose an
RFID based indoor localization system that relies on a carpet
of RFID tags and the readers on mobile object to calculate the
location and orientation of the mobile device. The proposed
system uses low-range passive RFIDs and various other pe-
ripherals that help in interpreting the sensor data. The readers
on the mobile object reads the information from the RFID tags
on the carpet and then uses the information to calculate its
position. The proposed system attains an average localization
accuracy of 6.5 cm. Mariotti et al. [135] utilize RFID reader
within the user’s shoes to track the movement of the user
in an indoor environment. The RFID reader communicates
with the passive RFID tags that are embedded in the floor
tiles. The author do not highlight the localization accuracy
that their system attained. Willis et al. [136] present a passive
RFID information grid that can assist blind users in obtaining
location and proximity related information. The user shoe is
integrated with an RFID reader that can communicate with
user device using Bluetooth. An RFID tag grid, programmed
with spatial and ambiance related information, is placed on the
ground so that the reader in user shoes can read the position
related information and convey it to the blind users.

Wang et al. [137] use active RFIDs for localization in an in-
door environment. The mobile user device has an RFID reader
while fixed RN (RFID tags) are distributed in the environment.
The authors use a two step approach. In the first step, the
strength of the signal in overlapping spaces is analyzed while
in the second phase, the user’s movement pattern is analyzed
using the signal strength. While the proposed localization
system is energy efficient, it lacks the accuracy required for
certain applications. To improve the accuracy, the number of
tags must be increased which can incur extra cost. Hightower
et al. [138] propose SpotON which is an RFID tags based Ad-
Hoc location sensing system. The proposed system relies on
the RSSI to obtain the location of different entities in an indoor
setting. RFID tags can be installed within a room, with which
the tagged users or entities can communicate and obtain their
relative location with respect to each other. SpotON can also
be used for absolute location, however the absolute position
of the RFID tags should be known.

5) BLE based DBL: Zafari et al. [139] propose an iBeacon
based indoor localization system that uses RSSI. A number of
iBeacons are used as RNs that passively transmit beacon sig-
nals. The user device with proprietary iOS application listens
to the beacon messages and uses Particle filtering to accurately
track the user location with an accuracy as high as 0.97m.
The system does not work effectively in real-time due to the
inherent CoreLocation Framework limitation, which does not
allow the user device to report RSSI sooner than 1 second.
Furthermore, the use of PF on the user device is not energy
efficient and can reduce the device battery life. Kriz et al. [140]

combine BLE enabled iBeacon with WiFi based localization
system to improve the overall localization accuracy. Initially,
the RSSI fingerprints are collected from different RNs and
stored in a database. During the online phase, an android
application on the user device obtains the RSSI values from
different sensors and then estimates user location using the
offline values. The use of iBeacons in conjunction with WiFi
results in 23% improvement in localization accuracy and a
median accuracy of 0.77 m is obtained. However, the system
cannot function in real-time and relies on multiple RSSI values
to obtain an accurate estimate.

Sadowsi et al. [141] compare the performance of Wi-Fi,
BLE, Zigbee and long-range WAN for indoor localization
using RSSI and evaluate their power consumption when they
are used by IoT devices. Experimental results showed that Wi-
Fi performed comparatively better than the other evaluated
technologies. Zafari et al. [142] present a Particle Filter-
Extended Kalman Filter (PFEKF) cascaded algorithm that
improves the localization accuracy when compared with using
only PF. Sikeridis et al. [143] present a location aware infras-
tructure that exploits in-facility crowd-sourcing for improving
RSSI fingerprinting. The authors develop a probabilistic cell-
based model that is obtained using an unsupervised learning
algorithm. An average location classification accuracy of 80%
is obtained which is improved to 90% by using a semi-
supervised approach. Blasio et al. [144] study the impact of
different iBeacon parameters on its performance. Furthermore,
to reduce the data collection time, the authors also propose a
semi-automatic system. Obreja et al. [145] also analyze the
performance of iBeacons for indoor localization and conclude
that beacons are energy efficient. Ke et al. [146] also rely on
fingerprinting and filter modifications to improve the localiza-
tion accuracy of iBeacons. The authors primarily emphasize on
the use of iBeacons for smart homes and intelligent systems.

6) Visible Light based DBL: Hu et al. [147] present Pharos,
which is an LED based localization system that requires mod-
ification to the existing LEDs. The authors design proprietary
system that is connected to the user device which helps in de-
tecting the LED light. Using the RSSI from the LEDs, Pharos
calculates the user location with a median accuracy as high
as 0.3 m. While the attained accuracy is high, modifying the
LED will incur further costs. Similarly, the use of a proprietary
detection system (attached to the user device) also will result
in higher costs as well as make the system less attractive to the
potential users. Li et al. propose Epsilon [148] that relies on
visible light from smart LEDs for localization. The user device
is embedded with custom light sensors that can receive the
energy transmitted by LEDs. As visible light can cause flicker
to human eyes, Epsilon relies on frequency higher than 200 Hz
and avoids lower frequency, since lower frequencies can make
people uncomfortable by causing flickering. While Epsilon can
result in sub-meter accuracy, it requires LoS and at least three
RNs (LEDs) to provide user position. Such constraints make
Epsilon unsuitable for localization if the user device is in some
bag as the LoS requirement will not be satisfied.

Zhang et al. propose LiTell [149] that uses fluorescent lights
as the RNs and the user device camera as the receiver. The
user device camera is converted into a optical sampling device
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by using image processing algorithms. LiTell relies on the
fundamental principle that due to unavoidable manufacturing
related reasons, the used RNs have a different characteristic
frequency (> 80 KHz) that is imperceptible to human eye but
can be detected by the camera on the user device. LiTell uses
this characteristic frequency to differentiate among different
RNs and then localize different users based on their proximity
to a certain RN. LiTell requires fluorescent lights, which might
not be present everywhere, which is why the LiTell based
localization system is not readily available. Furthermore, the
author do not comment on the localization accuracy that is
attained. It would be also interesting to analyse the energy
consumed on the user device due to the image processing
algorithms.

Zhang et al. also propose LiTell2 [150] that collects the light
fingerprints of different fluorescent tubes or LED lights and
uses photodiodes to collect AoA information for localization.
LiTell2 requires a customized AoA sensor that compares the
information obtained from two different photodiodes with
different field-of-view (FoV)9. LiTell2 relies on the motion
sensors present on the user devices to obtain an accurate
estimate of the user location. It is built on top of LiTell [149],
hence it can also work with unmodified fluorescent lights.
LiTell2, unlike LiTell, can also work with LEDs as it uses
photodiodes. However, just like in the case of LiTell, LiTell2
also needs to be investigated further from localization accuracy
and energy consumption perspective.

Jung et al. [151] present an LED based localization sys-
tem that utilizes the TDoA for tracking user location. The
system requires LoS path between the LED transmitters and
receivers. The system uses the fact that each LED must have
a different frequency. This helps in differentiating among the
LED transmitters. Using simulations, the authors show that the
proposed system achieves an average localization accuracy of
1.8mm in a 75m3 space. The authors do not comment on
the energy efficiency and latency of the proposed system.
Therefore, experimentally evaluating it can provide further
insights into the system.

Hu et al. [152] propose a localization system that relies
on already existing uneven light distribution in an indoor
environment. The authors first propose a light intensity model
that helps in reconstructing the received light intensity and then
a particle filter based module is used to harness user’s natural
mobility. The proposed system achieves a mean accuracy of
1.93m in 720m2 office space.

C. Emerging IoT technologies’ based localization

Lin et al. [153] discusses the design challenges of po-
sitioning support in Narrowband IoT (NB-IoT) and Long
Term Evolution (LTE). The paper primarily focuses on the
downlink based positioning method called Observed Time
Difference of Arrival (OTDOA). This is in contrast with
LoRA which provides uplink based positioning 10. While
uplink based positioning has lower device impact, OTDOA

9The difference in FoV value results in different RSSI values that are then
mapped to AoA

10The uplink signal from the device is picked up by different LoRa gateways

has higher scalability. The authors provide an insight into the
OTDOA architecture and protocols and also discuss designing
the OTDOA positioning reference signals. Simulation results
show that the positioning error is more than 50 meters for
more than 50% of the measurements. Sallouha et al. [154] uses
Ultra Narrowband (UNB) long-range IoT networks (Sigfox)
for localization. Rather than finding the accurate position, the
authors rely on RSSI fingerprinting for classifying the user in
particular zone hence the obtained accuracy ranges in tens of
meters. Henriksson [155] through simulation shows that the
localization accuracy of LoRA increases with increase in the
number of RNs. However, the achieved accuracy is in tens
of meters. Low Power Wide Area Networks (LPWANs) such
as LoRA and Sigfox in its current shape cannot provide high
localization accuracy and must be combined with other lo-
calization techniques and technologies for higher localization
accuracy [156].

D. Miscellaneous Systems

Other than the widely used above technologies and tech-
niques, there are a number of different systems discussed in the
literature as well that relies on Infrared, ambient magnetic field
and a number of different technologies. Haverinen et al. [157]
present a global indoor localization system that entirely relies
on the magnetic field of the environment. The authors argue
that the inherent magnetic field of different entities such as
walls, doors, windows is unique and can be used as a magnetic
signature to identify a location. A magnetometer at the user
end is used to sense the magnetic field, that is then matched
with offline magnetic field measurements. The approach is
very similar to the RSSI fingerprinting based systems. While
the authors have not provide a detailed discussion on the
accuracy of the system, they have shown that the system can
be optimized for an enhanced indoor localization system.

Gozick et al. [158] present a detailed discussion on how
magnetic maps can be developed for magnetic field based
localization. The internal magnetometer of a mobile phone is
used to collect extensive magnetic field related measurements
at different positions in a building. These measurements can
then serve as the reference points for localization in the
future. Riehle et al. [159] propose a magnetic field based
indoor localization system for the blind and visually impaired
people. A magnetometer attached to the user body obtains
the magnetic field measurements which are then forwarded
to the user on his device through Bluetooth. Like the work
done in [157], the system proposed in [159] also provides 1D
localization. Zhang et al. [160] propose GROPING, which is
a geomagnetic and crowd sourcing based indoor navigation
system. GROPING relies on the users to construct the map of
any particular floor or building by using the application and
measuring the magnetic field at different positions. Once the
map is constructed, any user can then use the constructed map
to obtain his location using revised monte-carlo localization.
The proposed system is not real-time and the localization
accuracy is also more than a meter.

Lu et al. [161] propose an image based indoor localization
system that relies on thermal imaging to obtain user location.
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The use of thermal imaging allows the system to work even
in the absence of light. To enhance the image quality of
thermal images, active transfer learning is used to enhance the
classification accuracy. During the classification, the thermal
images serve as the targets while color images serve as
the sources. Active transfer learning helps in choosing the
most relevant sample during the training phase. Experimental
results validate the effectiveness of the approach particularly
in dark environments. However, the authors do not comment
on the latency and localization accuracy of the approach.
Furthermore, the experimental results are in terms of detection
accuracy rather than the actual location of the user.

Distributed localization of wireless sensors has been a topic
of research for the last two decades. However with the advent
of IoT and the wide-scale use of wireless sensors in IoT
paradigm, the use of such distributed algorithms is relevant
more than ever. Langendoen et al. [162] provides a compar-
ison of three different distributed localization algorithms for
WSNs: a) Ad-hoc positioning, b) Robust positioning and c)
N-hop multilateration. All these three algorithms work in a
three phase structure

1) Determining node-anchor distances: Different nodes
share information that help in inferring the distance be-
tween anchors and different nodes. This phase primarily
revolves around communications among nodes and helps
in computing node positions in step 2.

2) Computing node positions: Different nodes determine
their position using the distance estimates to different
anchor nodes obtained in phase 1.

3) Refining the positions through an iterative process (op-
tional step): This is an optional step in which the position
estimates obtained in step 2 are further refined.

Results show that no single algorithm can be declared to be
the best as the performance of algorithms vary with changes in
conditions. But all the algorithms can be improved for higher
localization accuracy. These algorithms are also relevant to
localization in IoT. If the IoT sensors are treated as anchors
and the device to be tracked, such as a smartphone can serve
as the node to be tracked. So the above three algorithms can
also be applied for IoT based system.

Savvides et al. [163] present AHLoS (Ad-Hoc Localiza-
tion System) that allows different sensor nodes to localize
themselves using a number of distributed iterated algorithms.
AHLoS requires certain reference nodes (with known loca-
tions) and operates in two different phases i.e., ranging and
estimation. While ranging allows to estimate the distance
between an anchor/RN and a node, estimation would allow
the node to locate itself in a 2D or 3D setting using the
ranging information. The algorithm proposed is iterative, i.e.
the anchor nodes send beacon messages to the neighboring
nodes (position unknown) who localize their position using
beacon messages. The nodes that localize themselves then act
as anchor nodes and send beacon messages to its neighbor-
ing nodes whose position is unknown. Kumar et al. [164]
present a localization system that consumes only microwatts
of power at the mobile terminal and can attain high localization
accuracy. They propose a multi-band backscatter protoype

that works across different frequencies including ISM band.
Localization error as low as 145cm is observed at a distance
of 60 m.

Table IV evaluates various proposed localization systems
on the basis of metrics we proposed in Section V. The
type indicates whether it is MBL (M) or DBL (D) system.
The technology (Tech.) column indicates the type of wireless
technology that is employed for localization, while technique
highlights what particular metric is used to obtain user posi-
tion. Availability indicates whether the system can be readily
used on the user device i.e. do majority of the user devices
around the world have the capability to use the technology? A
system will satisfy the cost constraint if it does not require
any proprietary hardware or significant modification to the
existing infrastructure. Energy efficiency constraint is satisfied
only if the user device battery is not significantly drained by
the proposed system. As the MBL systems usually do the
calculation on APs (which are powered using a direct power
supply) or some backend server, so they will mostly be energy
efficient unless they require frequent transmissions from the
user device that can strain the user device battery. Reception
range constraint is satisfied if the reception range is more
than 10 meters. Accuracy below 1 meter is considered suitable
enough to satisfy the accuracy requirement. Latency must be
in order of milliseconds (ms) while we require the system
to support multiple device for scalability. The last column
proximity basically indicates whether the authors have used
their system for proximity based services.

Table V shows the localization accuracy, advantages and
disadvantages of different systems. It is worth mentioning
here that the results presented in these papers particularly
when it comes to localization accuracy cannot be used for
one to one comparison of these systems. This is because of
the variations in the environment where the experiments were
performed such as the space size, the presence of obstacles,
and the number of the people. Furthermore factors such as
whether stationary localization11 or mobile localization12 was
carried out also must be taken into account. EVARILOS [165]
is one such benchmarking project that can assist in comparing
different localization projects. Details about the project can be
found in [166].

VII. APPLICATIONS OF LOCALIZATION

Traditional indoor location-based services have been mainly
associated with people positioning and tracking (i.e., by ex-
ploiting the wireless signal transmitted from their personal
devices) and the use of dedicated wireless sensor networks for
asset tracking. Such traditional services, together with several
innovative and constantly emerging applications, have become
integral part of the wider IoT paradigm. Novel IoT applications
are driven by:

1) The wide proliferation of IoT which is becoming ubiq-
uitous in almost every modern indoor environment (e.g.,
smart houses, hospitals, schools, molls, factories).

11Where the user device does not move and the measurements for local-
ization are made at specific points in the space with the device not moving

12Where the user moves with his device and the measurements for local-
ization are made at random points in the space
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TABLE IV
EXISTING SYSTEMS PROPOSED IN THE LITERATURE

System Type Tech. Technique Evaluation Framework Proximity
Availability Cost Energy

Efficiency
Reception
Range Accuracy Latency Scalability

system in [92] M WiFi RSSI
√ √ √ √

× N/A N/A No
system in [126] D WiFi RSSI

√ √
×

√
×

√ √
No

Horus [38] D WiFi RSSI
√ √

×
√ √ √ √

No
RADAR [91] M WiFi RSSI

√ √
×

√
×

√ √
No

Loco [123] D WiFi RSSI
√ √

×
√

×
√ √

Yes
Redpin [125] D WiFi,

Cellular
or Blue-
tooth

RSSI
√ √ √ √

× ×
√

Yes

Ubicarse [21] D WiFi AoA
√ √

×
√ √

×
√

Yes
Chronos [20] M WiFi ToF

√ √
×

√ √
× × Yes

SpotFi [23] M WiFi AoA and
ToF

√ √
×

√ √
× × No

ArrayTrack [22] M WiFi AoA
√

×
√ √ √ √ √

No
Phaser [95] M WiFi AoA

√
× ×

√
×

√ √
No

BAT [30], [120] M Ultrasound ToF × ×
√

×
√ √ √

No
Cricket [121] D Ultrasound

& RF
ToF × × ×

√ √ √ √
No

Guoguo [74] D Acoustic
Signals

ToF
√

× × ×
√

×
√

No

WalkieLokie
[133]

D Acoustic
Signals

N/A
√

× × ×
√

N/A
√

Yes

Beep [103] M Acoustic
Signals

ToF
√

× ×
√ √

×
√

No

iBeacon based
system in [139]

D Bluetooth RSSI
√

× ×
√

× ×
√

No

iBeacon based
system in [57]

M Bluetooth RSSI
√

×
√ √ √

× × Yes

Bluepass [111] M Bluetooth RSSI
√

×
√ √

×
√

× No
ToneTrack [29] M WiFi TDoA

√
×

√ √ √ √ √
No

RF-Compass
[107]

M RFID MP13 ×
√ √ √ √ √ √

No

PinIt [108] M RFID MP14 ×
√ √ √ √ √ √

Yes
LANDMARC
[105]

M RFID RSSI ×
√ √ √

× ×
√

No

LocaLight [122] M Visible
Light

N/A
√ √ √

×
√

× × No

LiTell [149] D Visible
Light

N/A ×
√

× × N/A
√ √

No

LiTell2 [150] D Visible
Light

N/A ×
√

× × N/A
√ √

No

Pharos [147] D Visible
Light

RSS × × × ×
√

N/A
√

No

System in [151] D Visible
Light

TDoA × × × ×
√

N/A
√

No

System in [140] D WiFi &
iBeacons

RSSI
√

× ×
√ √

×
√

No

System in [25] M/D WiFi RSSI
√

× ×
√

× ×
√

No
System in [134] D RFID N/A × ×

√ √
× ×

√
No

2) The technological capability and diversity of IoT devices,
ranging from low-cost sensors to sophisticated smart
devices which can collect data and interact with the
environment and the end-user in myriad different ways.

3) The amalgamation of different IoT technologies (i.e.,
SigFox, LoRa, WiFi HaLow, Weightless, NB-IoT, etc.)
and other relevant IoT-enabling wireless standards such
as BLE, WiFi, Zigbee, RFID and UWB, which allow all
these devices to connect and communicate in a seamless,
yet efficient way.

4) The constantly increasing market demand for new com-
mercial products and improvement of user experience.

Localization and tracking can either be the primary purpose of

several IoT devices and network deployments (i.e., dedicated
sensors to locate the absolute or relative positions of people,
animals or objects), or a value-added service to many other
IoT systems (i.e., exploit the wireless signal used for the
communication of IoT devices to estimate and add location in-
formation to the collected by a device data). For these reasons,
localization applications have recently seen a drastic increase
in use around the world. They vary from marketing and
customer assistance, to health services, disaster management
and recovery, security, and asset management and tracking.
This section provides a brief overview of these applications
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TABLE V
CLAIMED LOCALIZATION ACCURACY OF DIFFERENT LOCALIZATION SYSTEMS

System Accuracy Advantages Disadvantages
System in [92] 2.4 m median Readily available, does not require extra hardware Low accuracy, no information provided about latency

and scalability of the system in the paper
Horus [38] 39 cm median Accurate, scalable and readily available Requires fingerprinting, may not be energy efficient.
RADAR [91] 2.94 m median One of the pioneering fingerprinting based work Less accurate, energy inefficient
Ubicarse [21] 39 cm median Novel formulation of synthetic aperture radar that

attains high accuracy, does not require any fingerprint-
ing, incurs no extra hardware cost

Requires the user to twist the device for localization,
devices must have two antennas, not energy efficient,
might affect the throughput offered by AP to other
users.

SpotFi [23] 40 cm median Highly accurate, incurs no extra cost Might not be scalable, can drain the device battery,
is not suitable for real time localization, might affect
the throughput offered by AP to other users.

Chronos [20] 65 cm median High accuracy, and does not require extra hardware,
only requires one AP for localization

Might affect the throughput offered by AP to other
users, can affect the battery of the user device due
to sweeping across different frequencies for accurate
ToF calculations

ArrayTrack [22] 23 cm median Real time and accurate MBL system, Requires some modifications to the AP that can incur
extra cost, also might affect the performance of the
APs.

Phaser [95] 1-2 m median Suitable reception range, real-time and scalable Over a meter accuracy, not energy efficient an re-
quires modifications to the APs for.

BAT [30], [120] 4 cm median Highly accurate, one of the pioneering work Requires extra hardware which will incur further
cost, Ultrasonic systems are not widely used.

Cricket [121] 10 cm median Highly accurate and scalable Requires extra hardware which will incur further
cost, Ultrasonic systems are not widely used.

Guoguo [74] 6-25 cm median High accuracy requires extra RNs, cannot work in high sound
pollution, not real-time

System in [139] 97 cm highest Good accuracy and readily available on the user device Not real-time, requires extra hardware
Beep [103] 0.9 m 95% Accuracy and privacy Requires extra RNs, cannot work in high sound

pollution
System in [139] 97 cm highest Good accuracy and readily available on the user device Not real-time, requires extra hardware
System in [57] 95 cm average Good accuracy and readily available on the user device Not real-time, requires extra hardware
ToneTrack [29] 90 cm median Real-time, accurate, and energy efficient Will not work if the device is not transmitting
RF-Compass [107] 2.76 cm median Highly accurate, provides device orientation as well Not real-time, performance is tested in very small

place
LANDMARC [105] 1 m median Energy efficient, and fairly accurate Computationally less efficient, requires high deploy-

ment density for its performance, tested in a small
scale

PinIt [108] 11 cm median High accuracy, energy efficient, reasonable range Not readily available on a majority of the user
devices, not suitable for typical MBL systems

LocaLight [122] 50 cm High accuracy Requires specific type of lighting, cannot work in
NLoS

LiTell [149] N/A Real-time and low cost Need LoS
LiTell2 [150] N/A Real-time and low cost Need LoS
Pharos [147] 0.3 m median High accuracy, relies on lighting Requires LoS, might not be real-time
System in [151] 1.8 mm average Highly accurate The authors do not comment on the energy efficiency

and real time nature of the proposed system
System in [140] 0.77 m median Fairly accurate Not real-time, requires the user to be stationary
System in [25] 1.76 m median Can be used for both MBL and DBL Requires extra hardware, the accuracy is over 1m,

not real-time
System in [99] 0.15 m maximum Highly accurate, widely used in industries High cost
System in [34] 0.15 m RMS Highly accurate Incurs extra cost, requires extra hardware, not widely

available on the user devices
System in [126] 1.5 m highest One of the first papers to use same device for offline

and online phase
Requires fingerprinting

WalkieLokie [133] 0.63 m mean High accuracy Limited range, can be affected by sound pollution
LoCo [123] 0.944 proximity detection Suitable for proximity based services Low accuracy and requires fingerprinting
Redpin [125] 0.947 proximity detection Suitable for proximity based services Low accuracy and requires fingerprinting
System in [134] 6.5 cm proximity detection High accuracy, energy efficient Tested in a very small area
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A. Contextual Aware Location based Marketing and Customer
Assistance

Marketing is a fundamental part of any business, as it
allows to improve the image of the brand and the product
and helps in attracting more customers that ultimately leads
to higher sales and profits. Traditional marketing is carried
out through different advertisements on televisions, mails,
billboards, emails, phones etc. However, they are not opti-
mized sources of advertisements as such advertisements do
not usually take the customer location as well as context such
as age, ethnicity, gender etc. into account.

Contextual-aware location based marketing is fundamen-
tally a revolutionary idea in the world of marketing that is
poised to improve the sales and profits. Rather than spamming
customers with irrelevant product advertisements, such mar-
keting would allow the business owners with the opportunity
to only send relevant advertisements and notifications. For
example, any customer ‘x’ who is primarily interested in sports
equipment would be sent advertisements/coupons relevant to
his/her interest based on his proximity or location in the store.
While the location can be obtained through indoor localization
systems, the context can be obtained using the historical data
(customer’s past visit data for inference). While the idea is
in its relevant infancy, the rise of big data analytics and IoT
is going to fuel its adoption. Museum 2.0 is one other such
novel concept that intends to improve the visitor satisfaction
level by enhancing the overall experience in a museum.
Localization is a fundamental part of Museum 2.0 in which
the user location and interest is taken into account to provide
relevant information to the users. The museum localization
system can make the artifacts interactive by playing videos
or sounds when any user approaches any particular exhibition
piece. Furthermore, the museum can alert the visitor about
a exhibition within the museum taking the user interest into
account. Through localization, the user can then be navigated
to a particular exhibition.

Similarly, other environments such as libraries and airports
can also greatly benefit from location based services. In
libraries, the visitors can find a specific book and the location
of the book using localization. Similarly, the library can also
provide the student with relevant information based on the
location. In airports, localization can allow the customers to
find their respective boarding gates or terminals without any
hassle and wastage of time. Major airports such as John
F. Kennedy (JFK) in New York, Heathrow London, Miami
International and many more have started using iBeacons to
provide proximity based services to the travelers and improve
overall customer experience [167]. In fact, Japan airlines uses
MBL to obtain the location of its staff and accordingly assign
tasks [167] in Tokyo Haneda Airport.

B. Health Services

Health sector can greatly benefit from indoor localization
as it can help save valuable lives. It can help both the hospital
staff, the patients as well as the visitors. If a patient needs
medical assistance, the current protocol requires broadcasting
the message or paging a specific doctor or staff member

who may not be in vicinity of the patient. The delay in
the arrival of the staff might even cause the death of the
patient. Similarly, broadcasting the message will cause other
staff members to receive irrelevant messages. A location based
solution would allow to track the position of the staff members.
In case of emergency, the localization system would find the
staff member who is in close vicinity and has the necessary
qualification to handle the emergency situation. This will avoid
the aforementioned delay as well as not spam the other staff
members. Indoor localization can also allow the doctors to
track various patients and track their mobility to ensure patient
safety. Visitors who intend to visit patients can find their
destination using a localization system without any hassle.

C. Disaster management and recovery

Technology can facilitate disaster management and assist
in recovery following any natural disaster (such as tornado,
earthquakes, storms and flood etc.) or human caused disasters
(terrorist attacks etc.). Localization can also help in efficient
disaster management and expedite the recovery process. One
of the fundamental challenges of disasters is usually obtaining
information about human beings, whether they are safe or
not and what is their location in the disaster affected area.
Localization can help in such scenarios by providing the
accurate location of the missing individuals and providing
them with medical help in extreme scenarios such as the user
being stuck in a rubble after an earthquake. Similarly, in the
event of a fire or any other calamity in an indoor environment,
the rescue team can obtain the user locations through the
localization system that can be then used for targeted operation
in the affected location.

D. Security

Localization can greatly improve security conditions around
the world. User mobility patterns and interaction can be used
to identify possible threats that might pose security risks.
Similarly, in battlefield or war zones, the military can track
its assets and troops through a localization system that will
improve the overall operation and increase the chances of
successful operation. The soldier on ground can also benefit
from a robust localization system to navigate in areas not
known to them. This is a strategic advantage as the soldiers can
pay attention to their operation and not worry about the paths
to take for moving forward. Using localization, the central
command can design better strategies and plans, which they
can then provide to the soldiers on the ground.

E. Asset Management and tracking

Asset management can fundamentally benefit from tracking
as it would allow different businesses to track the location of
their assets. It will also allow for better inventory management
and optimized operation management. While asset manage-
ment and tracking has been extensively discussed in literature
[168]–[175], we believe that the advent of IoT along with
accurate indoor localization system will revolutionize asset
management and tracking. Use of novel energy efficient tech-
niques and algorithms will eliminate the need for expensive
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proprietary hardware that is currently used in the industry and
different firms.

The aforementioned applications show that localization can
provide us with efficient and effective services, motive behind
which is to help the users and customers. In future, we expect
a wide range of other services and applications that would be
possible due to indoor localization.

VIII. CHALLENGES

In this section, we highlight some of the significant chal-
lenges that indoor localization and its adoption faces.

A. Multipath Effects and Noise

A fundamental challenge of indoor localization is the pres-
ence of multipath effects. Due to the inherent nature of the
signals, they can be reflected, refracted and diffracted of the
walls, metals, and in some cases even human beings. This
drastically affects the behavior of the signals. Approaches such
as RSSI, ToF, TDoA, AoA rely on these signals from the RN
or the user device to estimate the user location. However, in
presence of multipath effects, it is highly unlikely to obtain
a single signal. The receiver usually receives a number of
different phase delayed and power attenuated versions of
the same signal, which makes it challenging to obtain the
direct LoS signal and estimate the actual distance between
the transmitter and receiver. This has significant consequence
on indoor localization particularly the accuracy. To obtain
accurate estimate of the location, there is a need for complex
signal processing techniques that can identify the LoS signal
(if there is any) and minimize/eliminate the effects of multipath
signals. While recently literature has proposed some novel
and effective multipath and noise suppressing algorithms, their
adoption and utilization on wide scale seems highly unlikely
as such algorithms are complex and primarily feasible for
MBL (as MBL is at RN which usually has higher processing
capability and is not constrained in terms of power). However,
for DBL, such complex algorithms might not be useful since
most of the user devices lack the energy and processing
power to run such algorithms. Therefore, there is a need for
optimized, energy efficient and effective multipath and noise
suppressing algorithms that can assist in employing the signals
for accurate localization

B. Radio Environment

Indoor localization is highly dependent on the characteris-
tics of the indoor environment. The performance of the system
highly varies with the variation in dynamics of the environment
such as what are the walls and ceilings made up of, how
are different entities which act as obstacles placed and how
many people are there in the indoor space. All these factors
must be taken into account when designing any accurate
localization system. Most of the existing systems are tested in
controlled environment and they do not necessarily replicate
the characteristics of a real world indoor environment. It is
assumed in most of the proposed systems that there must be
at least one LOS path between the user and the RNs. However,

in big malls or small offices, it is highly likely that there will be
no LOS path between the user device and the RNs. Therefore,
there is a need to accurately model the characteristics of the
indoor environment. The model must take into account all the
variations in the environment particularly the impact of the
human beings during peak and off-peak hours of operation.

C. Energy Efficiency

Energy efficiency of the localization systems is very im-
portant for their ubiquitous adoption. As of now, most of the
existing localization systems comparatively use higher energy
to provide higher accuracy and better range. Particularly for
localization systems, it is extremely challenging to obtain
high accuracy without straining the device battery. This is
because for improved localization performance, user device
has to periodically listen to specific beacon message or signals.
This requires the device to actively monitor the wireless
channel and pick up different signals. While this is feasible
performance wise, it is not ideal in terms of energy efficiency.
As localization is the secondary task of most of user devices,
the drainage of device battery can lead to user dissatisfaction.
Therefore, there is a need to optimize the energy consumption
of the localization system. While the current research focuses
on improved localization performance in terms of accuracy,
in future there is a need for also optimizing the energy
consumption of the systems. Using highly effective noise
suppressing but less complex localization algorithms would
help keep the energy consumption cost low. In case of DBL,
the user device can offload the computational aspect of the
localization to some local or cloud based server that usually
has high processing power and continuous power supply. In
such cases, latency or the response time also needs to be
optimized as the goal is to provide real-time location updates
to the user.

D. Privacy and Security

The fundamental challenge to the adoption of wide scale
localization services is privacy. Most of the subscribers or
users are not willing to share data related to their location.
This is because user location is very sensitive information
that can jeopardize user privacy and security. Currently, the
existing localization systems do not taken into account the
privacy concerns and are primarily concerned with accurate
and effective indoor localization. However, with the ever
increasing Cyber-security challenges and the lack of an un-
derlying privacy mechanism for indoor localization, privacy is
a major challenge that the researchers have to address. How
do we guarantee, that a user who uses localization services
will not have privacy issues and the user data will be kept
secure, confidential and only used for specific purposes such
as targeted marketing etc.? Furthermore, how can the user trust
the system and the localization service provider? These are
fundamental questions that needs to be addressed to address
the privacy issues of localization. The deficit of trust between
the users and service providers and the security challenges that
can arise as a result of privacy breach needs to be thoroughly
tackled in order to allow for localization services to flourish.
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TABLE VI
CHALLENGES OF INDOOR LOCALIZATION AND SUGGESTED SOLUTIONS

Challenge Description Suggested Solution
Multipath & Noise The presence of obstacles and different interfering signals

can affect the performance of the indoor localization
systems

Utilize schemes that are energy efficient, less complex
and robust enough to minimize the adverse effects of
multipath and noise. Chirp spread spectrum is one of the
probably techniques robust to multipath and noise.

Environment Dynamics The change in the environment where the localization
system is used such as the number of people, the presence
of different equipment such as cupboards, shelves etc.
makes it much more challenging to accurately obtain user
position.

Do not rely on approaches such as fingerprinting, but
rather use the improved signal processing and superior
computing power of the user devices and servers to obtain
metrics such as CSI that are not highly influenced by
environment dynamics. Furthermore, always design the
system keeping in mind the worst case.

Energy Efficiency Real-time and highly accurate localization might drain
user device and RN’s power. However, for wide-scale
adoption of any indoor localization system, the system
must be highly energy efficient.

Use less complex and energy efficient algorithms. Of-
floading complex algorithms to some servers or cloud
based platform is also more energy efficient when com-
pared with using user device.

Privacy and Security User location is a sensitive information that a lot of users
are not willing to share. This is one of the reasons that
indoor localization has not yet been adopted on a wide
scale.

The localization service providers should guarantee the
users that the information will only be used for the
agreed upon purposes and will not be shared with any
other entity. Similarly, there is a need for new laws
and legislations that guarantees the user privacy will be
protected.

Cost The use of extra hardware or proprietary systems for
indoor localization is a major hurdle to its adoption
particularly when it comes to small business which might
not be able to afford them.

use existing architecture, possibly WiFi, for providing lo-
calization services without requiring any extra hardware.

Lack of Standardization Currently there is no standard that can govern indoor
localization research. Therefore, there are a number of
orthogonal solutions.

There is a need to define a standard for future local-
ization. The standard should take into account different
applications and requirements and accordingly set the
benchmark or minimum requirements as done by 3gpp
[176].

Adverse affects on the used tech-
nology

Localization relies on different wireless technologies
primary purpose of which is to connect users and pro-
vide improved throughput. As localization is secondary
purpose, it can impact the primary purpose of connecting
users as highlighted in [20]

Utilize mechanisms and techniques that can provide
accurate localization with minimal effect on the primary
purpose of wireless technologies. Localization should be
orthogonal to the primary purpose of these technologies.

Handovers The limited range as well as heterogeneity of wireless
technologies makes it very challenging to obtain a real-
time and reliable system.

Novel, robust and energy efficient hand-over (both verti-
cal and horizontal) mechanisms must be researched and
utilized for indoor localization.

Also, the system needs to authenticate that the new user who
wants to use localization services is not a malicious node but
indeed a customer who intends to benefit from the provided
services. If the authentication mechanism is weak, a malicious
node can infiltrate the system and carry out a systematic attack
against the localization system that will certainly affect the
overall performance of the system. Novel optimized security
and privacy protection mechanisms need to be put in place
to guarantee user safety and improved services. Using the
traditional complex and processing extensive centralized or
distributed key based systems will not work with the energy
constrained devices. There is a need for a privacy and security
mechanism, that is secure, energy efficient and does not require
high computing power. While these constraints are orthogonal
to each other and requires making a trade-off between the
processing complexity and privacy and security, an optimal
trade-off point can likely be reached. Another possible solution
is to design the system as a location support system rather than
a location tracking system [121]. A location support system
allows the user to obtain his location with respect to the anchor
points but provides the user with the freedom to discover
services based on his/her location rather than advertising his
position to the system and letting the system provide the
services. Therefore, it is important to further investigate the

privacy and security issues of localization.

E. Cost

Cost is another major challenge to the adoption of indoor
localization. Localization systems might require additional
infrastructure and anchor nodes which require additional in-
vestment. Furthermore, localization on a large scale is chal-
lenging and might require dedicated servers, databases and
some proprietary software. This is an added cost and certainly
would cause most of the customers/service providers to avoid
using localization services. While cost is a major challenge
now, it can be overcome by using the existing infrastructure
such as WiFi, cellular networks or a combination of both.

F. Lack of Standardization

Currently, there is no standard or governing set of specifica-
tions/rules that can serve as a guide for designing localization
and proximity techniques. There is no single wireless tech-
nology that is widely accepted as the main technology for
future localization systems. As evident from our discussion
on the proposed systems in the previous sections, a number
of different technologies and techniques have been used for
the purpose. However, most of the systems are disjoint and
there is no ubiquitous system that currently exists. This poses



28

significant challenges. Therefore, we believe that there is
a need for proper standardization of localization. Through
standardization, we can set the specifications and also nar-
row down the technologies and techniques that can satisfy
the aforementioned evaluation metrics. We also believe that
future communication technologies such as 5G should also
consider the significance of localization. Furthermore, there is
a need for creating a universal benchmarking mechanism for
evaluating an indoor localization system.

G. Negative impact on the used technology

Since the goal is to obtain a localization system which relies
on the existing infrastructure such as WiFi APs to provide its
services, it is important to limit its negative impact on the basic
purpose of the used technology i.e. providing connectivity to
the users. WiFi and other technologies in their design, as
of now, do not consider localization. This means that the
use of such technologies for localization will impact other
aspects of these technologies [20]. Therefore, we believe that
the localization systems should be designed in an optimal
way so that the main functionality of the technologies should
not be affected. This might require modifying the existing
standards to consider localization so that they can provide
indoor localization-as-a-service (ILPaaS).

H. Handovers

Due to the wide scale use of different technologies such as
WiFi, cellular, Bluetooth, UWB, RFID etc., we believe that
the future networks will be highly heterogeneous. Therefore,
it is highly likely that the localization system will be a
hybrid system that might rely on a number of technologies.
To obtain improved performance, there might be a need
for vertical handover among the RNs which use different
technologies. This can be because a certain RN might result
in the LOS that improves accuracy. Even if the system relies
on a single technology, the limited range of the technology
might necessitate horizontal handover among different RNs
as, in the absence of handovers, the system will not work if
the RNs and the user device are out of each others range.
While handovers have been extensively studied, the stringent
latency and limited resources of localization pose additional
challenges. The handover should be done quickly to allow
the system to perform efficiently without the user facing
any problems. Novel handover algorithms and procedures are
required that are less complex (so as to reduce the energy
consumption) and able to satisfy the system demands. Table
VI summarizes the aforementioned challenges to localization
along with the proposed solutions.

As evident from above discussion, localization is going
to play an important role in the future particularly after the
advent of IoT and wide-scale use of communication devices.
However, for that to happen, there is a need to optimize ex-
isting networks from localization perspective. Different tech-
nologies should take into account localization as an important
service. For example, realizing the significance of Machine
Type Communication and IoT, 3GPP standardization now
has dedicated bearers for such communication. We believe

localization should also be taken into account in such a
manner. As an example, if WiFi is to be used for localization,
specific mechanisms are needed so that WiFi APs can be used
for localization without jeopardizing its primary purpose of
connecting different entities.

IX. CONCLUSIONS

In this paper, we have presented a detailed description
of different indoor localization techniques (AoA, ToF, RToF,
RSSI, CSI etc.) and technologies (WiFi, UWB, Visible Light
etc.).The paper also provided a thorough survey of various
indoor localization systems that have been proposed in the
literature with particular emphasis on some of the recent
systems. Using our proposed evaluation framework, the pa-
per evaluated these systems using metrics such as energy
efficiency, accuracy, scalability, reception range, cost, latency
and availability. We provided a number of use case examples
of localization to show their importance particularly after
the rise of the IoT and the improved connectivity due to
different sensors. The paper also highlighted a number of
challenges affiliated with indoor localization and provided
general directions and solutions that can help in tackling these
challenges.
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