INDOOR LOCATION SENSING USING GEO-MAGNETISM

Jaewoo Chung¹, Matt Donahoe¹, Chris Schmandt¹, Ig-Jae Kim¹, Pedram Razavai², Micaela Wiseman²

MIT Media Laboratory 20 Ames St. Cambridge, MA 02139 ¹{jaewoo, donahoe, geek, ijkim}@media.mit.edu, ²{prazavi, wiseman}@mit.edu

Presented by Jaewoo Chung

INTRODUCTION

- Indoor positioning system using magnetic field as location reference
 - Magnetic field inside building

Magnetic field distortion

A magnitude map (in units of μT) of the magnetic field.

Using magnetic field distortion as fingerprints

Some visualization of magnetic distortion signatures created while rotating an e-compass on a some distance circumferences.

Perfect circle of 100 steps

Indoor example 1

Outdoor

Indoor example 2

Initial Investigation

Investigate the feasibility of using the magnetic field fingerprints as a localization reference for positioning system.

- How many sensors are needed to have a decent accuracy?
- How well the magnetic field aided positioning system would work?
- How can we correct the direction error from e-compasses?

Hardware setup Rotating tower with a magnetic sensor

Data format

• At each step, three-dimensional vector $\mathbf{m} = \{m_x m_y m_z\}$ produced from a magnetic sensor (HMC6343).

- Locations and directions are indexed
 - **Data set** $E = \{m_{0,0} ... m_{L,K}\}$ where
 - *L* is the location index
 - K is the rotation (step) index

Data collection process

A magnitude map (in µT) of the magnetic field.

- Every 2 feet (60 cm) along the corridor above 1 m on the floor.
- Total of 60 _{location points} X 100 _{directions} = 6,000 data features. (Data size = 84KB, 1 feature = 14 bytes)
- Two sets of data collected in a week apart.
 - Map dataset
 - Test dataset

DATA ANALYSIS

Angle correction

Accuracy as a function of a number of sensors

Confusion matrix & matrix of least RMS

Magnetic field distortion

Fingerprint matching method

- 8 different combinations (fingerprints) of m in d where $d^k = \{m_1...m_k\}$ with common denominator $k = \{100, 50, 25, 20, 10, 5, 4, 2\}$ (location index is omitted)
- Least RMS based Nearest Neighborhood: given a map dataset *E* and target location fingerprint *d*, then a nearest neighbor of *d*, *d*' is defined as:

$$\forall d'' \in E, |d \leftrightarrow d'| \leq |d \leftrightarrow d''|, |d \leftrightarrow d'| = \sqrt{\sum_{i=1}^{k} (d_i \leftrightarrow d'_i)^2}$$

where $E = \{m_{0,0} ... m_{L,K}\}$ (L = location index, K = rotation index). Once it found d', get L and K of the d' as predicted location and direction.

Localization performance

Finding location index of d' that has the least RMS error with k=4.

For example,
$$d^4$$
 can be $\{m_1, m_{26}, m_{51}, m_{76}\}$, $\{m_2, m_{27}, m_{52}, m_{77}\}$, ..., $\{m_{25}, m_{50}, m_{75}, m_{100},\}$.

$$Err_{mean} = 3.05 \text{ m}$$

 $Err_{sd} = 4.09 \text{ m}$
 $Err_{max} = 15 \text{ m}$

70 % of the predicted data had errors of less than 2 meters.

Normalized confusion matrix of RMS error with k=4.

Accuracy as a function of a number (k) of sensors

Average distance errors from every 8 different combinations (fingerprints) of d^k where k ={100, 50, 25, 20, 10, 5, 4, 2}

Number of sensors (k)

Angle correction

Finding direction index of fingerprint d' that has the least RMS

	Sensor	Prediction
Err _{mean}	20.38°	4.6°
Err_{sd}	15.32°	4.017°
Err _{max}	59.31°	21.6°
Err_{min}	-22.62°	00
Err _{range}	81.93°	21.60

• • • • Reading from sensor — Prediction

NEW SYSTEM DESIGN FOR PEDESTRIAN

New hardware design

Extend the system to provide a human wearable device

Data update rate 10 Hz

Magnetic sensor (M): 3 axes HMC5843 Gyroscope sensor (G): 3 axes ITG-3200 Accelerometer sensor (G): 3 axes ADXL345

MPU: ATmega328

Fingerprint matching method

Data format

- At each step, 3-dimensional X4 vector $\mathbf{d}_{\text{raw}} = [m_{x1}, m_{y1}, m_{z1}, m_{x2}, m_{y2}, m_{z2}, m_{x3}, m_{y3}, m_{z3}, m_{x4}, m_{y4}, m_{z4}]$ is produced from a magnetic sensor badge.
- Locations and directions are indexed
 - **Map** $E = \{d_{1,1} ... d_{L,K}\}$ where
 - L is the location index
 - K is the rotation index

- Least RMS based Nearest Neighborhood:
 - Given a map dataset *E* and target location fingerprint *d*, then a nearest neighbor of *d*, *d*' is defined as

$$\forall d'' \in E, |d \leftrightarrow d'| \leq |d \leftrightarrow d''|, |d \leftrightarrow d'| = \sqrt{\sum_{i=1}^{k} (d_i \leftrightarrow d'_i)^2}$$

L and K of the d' are predicted location and direction.

Data collection process

- Map fingerprints were collected at every 2 feet (60 cm) on the floor rotating sensor attached chair at the height of 4 feet above ground.
- The test data set was collected in a similar manner, sampling one fingerprint per step (2 feet), a week later than the creation of the fingerprint map.

Evaluation of localization performance

- Measure localization performance in two different structural environments:
 - Corridors
 - Atrium

Corridors

Corridor map data: Total of 37200 fingerprint = 868KB, (1 fingerprint data = 28 bytes)

Dimension = 187.2 m x 1.85 m

Atrium

Atrium map data: Total of 40800 fingerprints = 979.2 KB. (1 fingerprint data = 28 bytes)

Dimension = $13.8 \text{ m} \times 9.9 \text{ m}$

DATA ANALYSIS

Least RMS errors in Corridors

using least RMS with NN

75.7 % of the predicted positions have an error less than 1m.

$$Err_{mean} = 6.28 \text{ m} (Err_{sd} = 12.80 \text{ m}, Err_{max} = 52.60 \text{ m})$$

Least RMS errors in Atrium

using least RMS with NN

72 % of the predicted positions have an error less than 1m.

$$Err_{mean} = 2.84 \text{ m} (Err_{sd} = 3.39 \text{ m}, Err_{max} = 12.82 \text{ m})$$

Least RMS errors

Histogram of distance error.

Method for filtering outliers

- Algorithm using least RMS of raw, unit, and intensity vectors
- |L'_{raw}↔L'_{norm}| ≤ 1 or |L'_{raw}↔L'_{unit_vector}| ≤ 1, where L' is a location index of d'

$$\begin{aligned} & \boldsymbol{d_{\text{raw}}} = [m_1, \, m_2, \, m_3, \, m_4], \, \, \text{where} \, \, \boldsymbol{m} = \{m_x \, m_y \, m_z\} \\ & \boldsymbol{d_{\text{norm}}} = [n_1, \, n_2, \, n_3, \, n_4], \, \, \text{where} \, \, \boldsymbol{n} = \sqrt{m_{xk}^2 + m_{yk}^2 + m_{zk}^2} \\ & \boldsymbol{d_{\text{unit_vector}}} = [u_{x1,} \, u_{y1,} \, u_{z1,} \, u_{x2,} \, u_{y2,} \, u_{z2,} \, u_{x3,} \, u_{y3,} \, u_{z3,} \, u_{x4,} \, u_{y4,} \, u_{z4}], \\ & \text{where} \, \, \boldsymbol{u}_{(x,y,z)} = m_{(x,y,z)k} / \boldsymbol{n}_{k,} \end{aligned}$$

Least RMS errors in corridors

using least RMS with NN

88 % of the predictions fall under 1 meter of error.

Least RMS errors in Atrium

Algorithm using least RMS of raw, unit, and intensity vectors

86.6 % of the predictions fall under 1 meter of error

Histogram of distance error in meters.

CDF of distance error in meters.

Result with varying search area

Search area in diameter	Err _{mean} (m)	Err _{SD} (m)					
Corridor							
>72 meter	4.96 meter	13.94 meter					
40 meter	1.65 meter	6.15 meter					
30 meter	0.66 meter	3.22 meter					
20 meter	0.32 meter	1.15 meter					
Atrium							
>15 meter	0.96 meter	2.17 meter					
9 meter	0.61 meter	1.75 meter					

Other outlier filtering methods (recent updates)

- Combined with WiFi localization [1]
 - $Err_{mean} = 0.92$ meter
 - $Err_{SD} = 1.91$ meter
 - $Err_{max} = 9.6$ meter
- Applying particle filter
 - 1000 particles with particle motion models used in (Haverinen et al 2009).
 - Particles converge after 3 meters of travel.
 - $Err_{mean} = 0.7$ meter
 - $Err_{SD} = 0.89$ meter
 - $Err_{max} = 7.1 \text{ meter}$

[1] Place Engin http://www.placeengine.com

[2] Haverinen, J.; Kemppainen, A., "A global self-localization technique utilizing local anomalies of the ambient magnetic field," Robotics and Automation, 2009. ICRA '09. IEEE International Conference

INDOOR MAGNETIC FIELD STABILITY

The magnetic field's stability inside of a building over time.

The effect of moving objects on system performance.

The effect of objects carried by the user.

The magnetic field's stability inside of a building over time

Method:

- CosineSimilarity (A, B) = $\frac{1}{n}\sum_{i=1}^{n} \frac{(A_i \cdot B_i)}{||A_i|| ||B_i||}$, where n = 60;
- Magnitude (A, B) = $\frac{\sum_{i=1}^{n} ||A_i||}{\sum_{i=1}^{n} ||B_i||}$, where n = 60.

Results:

- CosineSimilarity(M_{init}, M_{2_week}) = 0.9997, and CosineSimilarity(M_{init}, M_{6_month}) = 0.9977.
- Magnitude(M_{6 month}, M_{init}) = 0.99 and Magnitude(M_{2 week}, M_{init}) = 1.01

The effect of moving objects on system performance

The minimum RMS distance between any two locations in our map data = 1.96 μ T. Error tolerance < 0.98 μ T

The effect of moving objects on system performance

Errors measured in a room, with and without furniture, was also not significant.

(RMS error = $0.71 \mu T$)

Previous Work

- Infrastructure based
 - GPS (Radio, Satellites)
 - Active Badge (IR, IR beacons)
 - Active Bat (Ultrasound, beacons)
 - WLAN based positioning (Radio, WLAN stations)
- Without Infrastructure System
 - Vision based (vSLAM and PTAM)
 - Magnetic field based (single magnetic sensor + statistical & probabilistic approaches)
 - Siiksakulchai et al. 2000
 - Haverinen et al. 2009
 - Navarro et al. 2009

Discussion

- Limitations
 - Cost of constructing magnetic field maps
 - Map data collection method needs to be improved.
 - Works in buildings based on metallic skeletons
 - Influences of dynamically changing magnetic fields generated by large devices.

Conclusion

System	Wireless Technology	Positioning Algorithm	Accuracy	Precision	Cost
Our system	Magnetic Fingerprints	Nearest Neighborhood with least RMS	4.7 m	90% within 1.64 m 50 % within 0.71 m	Med- ium
RADAR	WLAN RSS fingerprints	kNN, Viterbi-like algorithm	3-5 m	90% within 5.9 m 50% within 2.5 m	Low
Horus	WLAN RSS fingerprints	Probabilistic method	2 m	90% within 2.1 m	Low
Where Net	UHF TDOA	Least Square/RWGH	2-3 m	50% within 3m	Low
Ubisense	Uni-directional UWB TDOA + AOA	Least Square	15 cm	99% within 0.3m	High
GSM finger- printing	GSM cellular network (RSS)	Weighted kNN	5m	80% within 10m	Med- ium