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Abstract

Accurate indoor localization has long been an objective of the ubiquitous computing research
community, and numerous indoor localization solutions based on 802.11, Bluetooth, ultrasound
and infrared technologies have been proposed. This paper presents the first accurate GSM indoor
localization system that achieves median within floor accuracy of 4 m in large buildings and is able
to identify the floor correctly in up to 60% of the cases and is within 2 floors in up to 98% of the
cases in tall multi-floor buildings. We report evaluation results of two case studies conducted over
a course of several years, with data collected from 6 buildings in 3 cities across North America.
The key idea that makes accurate GSM-based indoor localization possible is the use of wide signal-
strength fingerprints. In addition to the 6-strongest cells traditionally used in the GSM standard, the
wide fingerprint includes readings from additional cells that are strong enough to be detected, but
are too weak to be used for efficient communication. We further show that selecting a subset of
highly relevant channels for fingerprinting matching out of all available channels, further improves
the localization accuracy.
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1. Introduction

The accurate localization of objects and people has long been considered an important
building block for ubiquitous computing applications [9,10]. The most commonly available
location technology today is the Global Positioning System (GPS). Unfortunately, GPS
does not work well indoors, in urban canyons, or in similar areas with limited view of
the sky. Instead, most research on indoor localization systems has been based on the
use of short-range signals, such as 802.11 [3,7,13], Bluetooth [1], ultra sound [17], or
infrared [18]. This paper shows that contrary to popular belief, an indoor localization
system based on wide-area GSM fingerprints can achieve high accuracy, and is in fact
comparable to an 802.11-based implementation.

This paper presents the first accurate indoor localization system based on fingerprinting
of GSM signals. Fingerprinting relies on a training phase in which a radio map of the
environment of interest is constructed by taking a series of radio measurements in multiple
locations. A measurement records the strength at which signals emanating from a group of
radio sources are heard at a given location. Once the training phase is complete, a client
can estimate its location by matching the current measurement to the set of measurements
collected in the training phase.

The key idea that makes accurate GSM-based indoor localization possible is the use of
wide signal-strength fingerprints. The wide fingerprint includes the 6-strongest GSM cells
and readings of up to 29 additional GSM channels, most of which are strong enough to be
detected, but too weak to be used for efficient communication. The higher dimensionality
introduced by the additional channels dramatically increases localization accuracy.

GSM-based indoor localization has several benefits: (i) GSM coverage far exceeds the
coverage of 802.11 networks; (ii) the wide acceptance of cellular phones makes them ideal
conduits for the delivery of ubiquitous computing applications. A localization system based
on cellular signals, such as GSM, leverages the phone’s existing hardware and removes the
need for additional radio interfaces; (iii) because cellular towers are dispersed across the
covered area, a cellular-based localization system would still work in situations where a
building’s electrical infrastructure has failed. Moreover, cellular systems are designed to
tolerate power failures. For example, the cellular network kept working during the massive
power outage that left most of the Northeastern United States and Canada in the dark
in the Summer of 2003; (iv) GSM, unlike 802.11 networks, operates in a licensed band,
and therefore does not suffer from interference from nearby devices transmitting on the
same frequency (e.g., microwaves, cordless phones); and (v) the significant expense and
complexity of cellular base stations1 result in a network that evolves slowly and is only
reconfigured infrequently. While this lack of flexibility (and high configuration cost) is
certainly a drawback for the cellular system operator, it results in a stable environment that
allows the localization system to operate for a long period before having to be recalibrated.

We describe two case studies conducted over a course of two years. The first study
examines the effects that fingerprint width and channel selection have on localization
accuracy. We experimented with traces collected from three buildings located in Toronto

1 A macro-cell costs $500,000 to $1 million. Micro-cells cost about a third as much, but a larger number is
needed to cover the same area [16].
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and Seattle, which cover a wide spectrum of urban densities, ranging from a busy
downtown core to a quiet residential neighborhood. Overall, the system achieves within-
floor median localization accuracy as low as 2 m.

The second study examines the application of GSM localization technology to the
specific problem of determining the floor in a tall building on which a user is located. Floor-
level localization is important in emergency situations where it can significantly reduce
the area that rescue personnel have to canvas to locate individuals in large buildings. For
example, the Empire State Building has a total floor area of 204,385 m2 spread over 102
floors. Floor-level localization reduces the area that needs to be searched by more than 99%
to just 2000 m2 (about 18,000 ft2).

We collected traces in three tall buildings located in Toronto, Seattle and Washington
DC using a commodity smart phone. Experimental results show that our system correctly
identifies the floor up to 60% of the time and is within 2 floors up to 98% of the time.
The system is robust, it works across a number of GSM network operators, when training
and testing sets were collected by different smart phones of the same model and up to one
month apart.

The rest of this paper is organized as follows. Section 2 describes related work. Section 3
gives a brief background on GSM and fingerprinting. Section 4 describes the localization
algorithms we use. Sections 5 and 6 describe our two case studies and present their
evaluation results. Finally, Section 7 concludes the paper.

2. Related work

This paper examines the effectiveness of GSM fingerprinting as an indoor localization
technique. While this combination is new, indoor localization, radio fingerprinting and use
of GSM for localization have all been explored before. We describe these efforts and key
distinctions between these efforts and ours.

2.1. Indoor localization

While outdoor localization is almost exclusively performed using the Global Positioning
System (GPS), indoor location systems have successfully employed a variety of
technologies. The original Active Badge system [9] and follow on commercial systems
like Versus [22] use infrared emitters and detectors to achieve 5–10 m accuracy. Both
the Cricket [17] and the Bat [18] systems use ultrasonic ranging to estimate location.
Depending on the density of infrastructure and degree of calibration, ultrasonic systems
have accuracies between a few meters and a few centimeters. Most recently, ultra-wideband
emitters and receivers have been used to achieve accurate indoor localization [21]. The
common drawback of all of these systems is that they require custom infrastructure
for every area in which localization is to be performed. As a result, these systems
have not seen significant deployment outside of high-value applications like hospital
process management. In contrast, GSM fingerprinting makes use of the existing GSM
infrastructure, obviating the need for infrastructure investment and greatly increasing
the possible area in which the system will work. This increases the likelihood of GSM
fingerprinting achieving popular adoption.
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2.2. Indoor localization using 802.11 fingerprinting

Bahl and Padmanabhan [3] observed that the strength of the signal from an 802.11
access point does not vary significantly in a given location. They used this observation
to build RADAR, a system that performed localization based on which access points
would be heard where, and how strongly. This was the first fingerprinting system that
showed that it is possible to localize a laptop in the hallways of a small office building
within 2–3 m of its true location, using fingerprints from four 802.11 access points. There
have been improvements to Radar’s fingerprint matching algorithm that have improved
accuracy [2,13,19] and were able to differentiate between floors of a building with a high
degree of precision [8]. In addition, commercial localization products have been built using
802.11 fingerprinting [20]. The differences between our work and 802.11 fingerprinting
systems are primarily due to the differences between 802.11 and GSM that were outlined in
Section 1: Due to higher coverage, GSM fingerprinting works in more places than 802.11
fingerprinting. Due to more stable infrastructure, 802.11 radio maps will degrade more
quickly than GSM radio maps. Due to shorter range, 802.11 fingerprinting will be more
accurate than GSM fingerprinting given the same number of radio sources.

2.3. Localizing using GSM

A number of systems have used GSM to estimate the location of mobile clients.
The Place Lab system employed a map built using war-driving software and a simple
radio model to estimate a cell phone’s location with 100–150 m accuracy in a city
environment [15]. The goal of Place Lab was to provide coarse-grained accuracy with
minimal mapping effort. This is different, and complementary to our goal of doing accurate
indoor localization given a detailed radio survey. Another distinction is that Place Lab used
a cell phone platform that only programmatically exported the single associated cell tower.

Laitinen et al. [14] used GSM-based fingerprinting for outdoor localization. They have
collected sparse fingerprints from the 6-strongest cells, achieving 67th percentile accuracy
of 44 m. Finally, Laasonen et al. used the transition between GSM cell towers to build a
graph representing the places a user goes [12]. Like Place Lab, Laasonen’s system used cell
phones that only exported the single cell tower the phone was associated with. In contrast
to the other systems we have mentioned, Laasonen’s system did not attempt to estimate
absolute location, but rather assigned locations symbolic names like Home and Grocery
Store.

These previous efforts to use GSM for localization differ from the work reported in
this paper in that they used narrow fingerprints that include the signal strength for the
current cell [12,15] or the 6-strongest cells [14]. In contrast, we used wide fingerprints that
include up to 29 different GSM channels in addition to the 6-strongest GSM cells, which
significantly improve localization accuracy. In addition, previous efforts collected sparse
fingerprints in outdoor environments, while we collected fingerprints indoors in a dense
grid with 1.5 m granularity.

3. Background

This section first gives an overview of GSM and then describes radio fingerprinting.
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3.1. GSM primer

GSM is the most widespread cellular telephony standard in the world, with deployments
in more than 210 countries by over 860 network operators [6]. In North America, GSM
operates on the 850 MHz and 1900 MHz frequency bands. Each band is subdivided into
200 kHz wide physical channels using Frequency Division Multiple Access (FDMA).
Each physical channel is then subdivided into 8 logical channels based on Time Division
Multiple Access (TDMA). There are 299 non-interfering physical channels available in the
1900 MHz band, and 124 in the 850 MHz band, totaling 423 physical channels in North
America.

A GSM base station is typically equipped with a number of directional antennas that
define sectors of coverage or cells. Each cell is allocated a number of physical channels
based on the expected traffic load and the operator’s requirements. Typically, the channels
are allocated in a way that there is both increase in coverage and reduction in interference
between cells. Thus, for example, two neighboring cells will never be assigned the same
channel. Channels are, however, reused across cells that are far-enough away from each
other so that inter-cell interference is minimized while channel reuse is maximized. The
channel-to-cell allocation is a complex and costly process that requires careful planning
and typically involves field measurements and extensive computer-based simulations of
radio signal propagation. Therefore, once the mapping between cells and frequencies has
been established, it rarely changes.

Every GSM cell has a special broadcast control channel (BCCH) used to transmit,
among other things, the identities of neighboring cells to be monitored by mobile stations
for handover purposes. While GSM employs transmission power control both at the base
station and the mobile device, the data on the BCCH is transmitted at a full constant power.
This allows mobile stations to compare signal strength of neighboring cells in a meaningful
manner and choose the best one for further communication. It is these BCCH channels that
we use for localization. In the rest of this paper, we refer to the BCCH channels simply as
channels.

3.2. Fingerprinting

Two factors lead to the good performance of radio fingerprinting in the wireless band
used by GSM and 802.11 networks. The first is that the signal strengths observed by mobile
devices exhibit considerable spatial variability at the 1–10 m level. That is to say, a given
radio source may be heard stronger or not at all a few meters away. The second factor is
that these same signal strengths are consistent with time; the signal strength from a given
source at a given location is likely to be similar tomorrow and next week. In combination,
this means that there is a radio profile that is feature rich in space and reasonably consistent
with time. Fingerprinting-based location techniques take advantage of this by capturing this
radio profile for later reference.

Fingerprinting relies on a “training phase” in which a mobile device moves through the
environment recording the strength of signals emanating from a group of radio sources
(e.g., 802.11 access points, GSM base stations, FM radio [11] or TV stations). We refer
to the physical position where the measurement is performed as a location, to the radio
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scan as a measurement and to the recording of the signal strength of a single source as a
reading. That is, to build a radio map of the building, a mobile device takes a series of
measurements in multiple locations of the building. Each measurement is composed of
several readings; one for each radio source in range. The set of data recorded in a single
location is also referred to as a training point. Since fingerprinting systems do not model
radio propagation, a fairly dense collection of radio scans need to be collected to achieve
good accuracy. The original RADAR experiments, for example, collected measurements
every square meter on the average [3]. To achieve their advertised accuracy, the commercial
802.11 fingerprinting product from Ekahau [20] recommends a similar density.

Once the training phase is complete, a client can estimate its location by performing
a radio scan (or equivalently collecting a testing point) and feeding it to a localization
algorithm, which estimates the client’s location based on the similarity of the signal-
strength signatures between the testing and the training points. The similarity of signatures
can be computed in a variety of ways, but it typically involves finding measurements in the
training points that have the same radio sources with similar signal strengths.

4. Localization algorithms

In this section, we describe the localization algorithms we use in the rest of the paper. All
our algorithms use the K -nearest neighbors [3] technique for matching fingerprints. Given
a testing point and a list of training points, K -nearest neighbors estimates the location of
the testing point in two stages.

First, the algorithm scans through all training points and calculates the Euclidean
distance in signal space between the testing point and each of the training points. Then, the
algorithm produces an estimate of the testing point’s location by averaging the locations
of the K training points with the smallest Euclidean distance. To compute the Euclidean
distance, the algorithm uses readings for all available radio sources in the fingerprint
based on the assumption that the more radio sources are used the better the localization
accuracy. For example, if a training fingerprint contains signal-strength readings for 3
sources {Rtr

1 , Rtr
2 , Rtr

3 } and a testing fingerprint has signal-strength readings for the same
3 sources {Rtst

1 , Rtst
2 , Rtst

3 } then the Euclidean distance between the two fingerprints will be
calculated as:√

(Rtr
1 − Rtst

1 )2 + (Rtr
2 − Rtst

2 )2 + (Rtr
3 − Rtst

3 )2. (1)

We implemented three localization algorithms which differ in the structure of their
GSM fingerprints: onecell, uses the reading of the single-strongest GSM cell; cell, uses
readings of the 6-strongest GSM cells; and chann, uses readings from up to 35 GSM
channels. For comparison purposes, we also implemented an algorithm dubbed 802.11,
whose fingerprints include only readings from 802.11 access points.

Our algorithms use all available radio sources to compute the Euclidean distance
between the testing and the training measurements. As it turns out, in practice, some of
the radio sources may be either too noisy or too stable across different locations and
including them in the calculation of the Euclidean distance may actually reduce localization
accuracy. For example, if radio source 2 is identified for possible removal, its readings can
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be ignored, and the Euclidean distance between the training and the testing fingerprint can
be calculated as:√

(Rtr
1 − Rtst

1 )2 + (Rtr
3 − Rtst

3 )2. (2)

The simplest approach for selecting the radio sources to be used for fingerprint matching
would be to try all possible combinations of radio sources on the training data and pick the
radio sources that result in the best performance. However, such search is exponential in
the number of radio sources and therefore intractable. Instead, we used a greedy feature
selection technique [4] to select a subset of highly relevant radio sources to be used in the
Euclidean distance calculation. This greedy technique, albeit not optimal, has been shown
to work well in practice [4]. The algorithm starts with a set that contains all available
radio sources. At each step, the algorithm removes one radio source from the set. The
radio source that is being removed is the radio source whose removal results in the largest
increase in localization accuracy. The algorithm stops when removal of any radio source
results in worse localization accuracy. In the rest of this paper, we refer to the version of
chann that uses feature selection as chann f s .

5. Within-floor localization study

The within-floor localization study was conducted during the first half of 2005, and
it examined the effect that fingerprint width and channel selection have on within-floor
localization accuracy. In the rest of this section, we will describe our data collection process
and data analysis, and then present our evaluation results.

5.1. Data collection

We collected measurements in two office buildings and one private detached house. The
office buildings are the home to the Department of Computer Science of the University of
Toronto and the Intel Research Seattle Lab. In the rest of this paper, we refer to these
buildings as: University, Research Lab, and House.

University is a large (88 m × 113 m) building with lecture rooms, offices and research
labs, located in Toronto’s busy downtown core. Since we had no access to the offices, we
collected training points in the hallways of the 7th floor of the building. Research Lab is
a medium size (30 m × 30 m) building, located in Seattle’s commercial midtown. Space
inside the building is partitioned with semi-permanent cubicles. Due to access restrictions,
we collected measurements only from the 5th floor of the building. House is a wooden
structure (18 m×6 m), located in a quiet residential neighborhood of Seattle. We collected
measurements on the first floor of the house.

We collected both 802.11 and GSM fingerprints using a laptop running Windows XP.
To collect 802.11 fingerprints, we used an Orinoco Gold wireless card configured in active
scanning mode, where the laptop periodically transmits probe requests and listens to probe
responses from nearby 802.11 APs.

We collected GSM fingerprints using a Sony Ericsson GM28 GSM modem, shown
in Fig. 1, which operates as an ordinary GSM cell phone, but exports a richer
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Fig. 1. Sony Ericsson GM28 modem.

Table 1
Average signal strength (db m) for cells and channels

University (downtown) Research lab (midtown) House (residential)

Cells −87.69 −76.74 −88.35
Channels −96.41 −102.19 −105.27

programming interface. The GSM modem provides two interfaces for accessing signal-
strength information: cellsAPI and channelsAPI.2 The cellsAPI interface reports the cell
ID, signal strength, and associated channel for the n-strongest cells. While the modem’s
specification does not set a hard bound on the value of n, in practice in the 3 environments
we measured n was equal to 6. The channelsAPI interface simultaneously provides the
signal strength for up to 35 channels, 13 of which can be specified by the programmer,
with up to 22 additional channels picked by the modem itself. In practice, 6 of the 35
channels typically correspond to the 6-strongest cells. Unfortunately, channelsAPI reports
signal strength but does not report cell IDs. We speculate that the cell ID information for
other than the 6-strongest cells cannot be determined because the IDs of the cells may not
be extractable from the weak signals with high enough reliability.

Table 1 shows the average signal strength returned by the cellsAPI and channelsAPI
interfaces. As expected, the average signal strength reported by cellsAPI is significantly
higher than the average signal strength reported by channelsAPI. Note that the average
signal strength reported by the channelsAPI interface is close to the modem’s stated
receiver sensitivity3 of −102 db m. Efficient GSM communication requires an SNR higher
than −90 db.

The lack of cell ID information for some channels raises the possibility of aliasing,
i.e., a situation when two or more cells transmitting simultaneously on the same channel
appear to be a single radio source and therefore cannot be differentiated. In the extreme
case, a fingerprinting system that relies exclusively on channel-based data may suffer from
worldwide aliasing. Because channels are reused throughout the world, measurements

2 The terms cellsAPI and channelsAPI are used to simplify presentation. In practice, the cellsAPI correspond
to AT*E2EMM=1 command and the channelsAPI correspond to the AT*E2NBTS? command on the GM28 GSM
modem, respectively.

3 In practice, the modem reports signal strength as low as −115 db m.
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Fig. 2. Audiovox SMT 5600 phone.

taken in two far-away locations may produce similar fingerprints. To alleviate the aliasing
problem, we combine the information returned by the cellsAPI and channelsAPI interfaces
into a single fingerprint. We then restrict the set of fingerprints to which we compare a
testing point to fingerprints that have at least one cell ID in common with the testing
point. This practice effectively differentiates between fingerprints from our three indoor
environments.

As we show in Section 5.3, our localization system based on wide GSM fingerprinting
significantly outperforms GSM fingerprinting based on the 6-strongest cells, and is
comparable to 802.11-based fingerprinting. This is because our fingerprints are wide (have
many readings), and therefore, in order for the aliasing to reduce accuracy, many readings
in the fingerprints of distant locations need to match, which is highly unlikely in practice.

We developed a simple Java-based application to assist us in the process of gathering
fingerprints. To record a fingerprint, we first identify the current position by clicking on
a map of the building. The application then records the signal strengths reported by the
802.11 card and the cellsAPI and channelsAPI interfaces of the GSM modem. To collect
the measurements, we placed the laptop on an office chair and moved the chair around the
building. While primitive, this setup assures measurements collected at a constant height.
In all three indoor environments, we collected 802.11 and GSM fingerprints for points
located 1–1.5 m apart. We collected 2 measurements per location, waiting 5 s between
the scans (the default value according to the modem specification). Overall, we collected
measurements at 154 locations in the University, 181 locations in the Research Lab and 44
locations in the House.

5.2. Data analysis

In this section, we first investigate the stability of GSM and 802.11 signals over time at
a single location and then show the distribution of the fingerprint widths as recorded in the
University building.

To compare the stability of GSM and 802.11 signals, we recorded the signal strength
of nearby 802.11 access points (AP) and 6-strongest GSM cells at several locations in
one of the buildings that houses the Department of Computer Science at the University of
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Fig. 3. 802.11 and GSM signal stability over time.

Fig. 4. Cumulative distribution of the fingerprint width at the University building. Shown are fingerprints based
on 802.11 AP, GSM cells, and GSM channels.

Toronto. Fig. 3 shows a 3 h segment of the signal-strength measurements at a location on
the fifth floor of the building during a workday afternoon. The plot shows the 3-strongest
GSM cells and the 3-strongest 802.11 APs. GSM signals appear to be more stable than
802.11 signals. We believe that this is because 802.11 uses crowded unlicensed 2.4 GHz
band, and therefore suffers from interference from nearby appliances such as microwaves
and cordless phones. An analysis of GSM signal stability over longer periods of time and
under different weather conditions (e.g., rain, snow, fog) is left for future work.

Fig. 4 plots the cumulative distribution function (CDF) of the fingerprint width at the
University building. Fingerprints based on 802.11 AP, GSM cells, and GSM channels are
shown in the figure. The figures for the Research Lab and the House show similar patterns
and are therefore not included. The median widths of 802.11 AP and GSM cells fingerprints
are 5 and 6, respectively. In contrast, the median width of GSM channel fingerprints is
25. We will show in the next section that the larger fingerprint has a dramatic effect on
localization performance.
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Table 2
Within-floor 50% and 95% localization error (m)

University (downtown) Research lab (midtown) House (residential)
50-percentile 95-percentile 50-percentile 95-percentile 50-percentile 95-percentile

802.11 4.78 19.92 2.20 11.40 3.43 9.66
chann f s 3.02 17.92 2.50 10.70 1.94 7.79
chann 4.07 27.79 3.40 16.35 3.36 12.41
cell 8.02 32.14 4.82 15.78 3.41 10.79
onecell 14.64 55.51 8.39 20.45 4.85 13.36
random 30.43 65.72 10.40 20.06 6.21 14.35

5.3. Evaluation results

The results reported in this section were obtained using leave-one-out cross-validation
method, which takes one point at a time out of the training set and uses it as the testing
point. This technique is similar to that used by Bahl [3].

Table 2 summarizes the localization errors for the 5 algorithms introduced in Section 4
for the three indoor environments. For each building, the table shows the 50-percentile
and the 95-percentile localization errors, calculated as the Euclidean distance between the
actual and predicted location of the point within a floor. Table 2 also presents results
for random, an algorithm that arbitrarily picks a point from the training set data and
assigns its location as the predicted location. random provides a lower bound on the
performance of localization systems for a given floor and building. The localization error in
random depends on the size of the floor, which accounts for the difference in its localization
error across buildings.

Across the three buildings, 802.11 achieves median accuracy between 2.2 and 4.8 m.
These results are consistent with results previously reported in the literature. Differences
in accuracy between buildings reflect discrepancies in the granularity of the measurement
grid which varied between 1 and 1.5 m, the difference in floor areas, and the difference in
the number of points taken on each floor.

There are large differences in the performance of the various GSM-based algorithms.
chann and chann f s outperform cell and onecell in all cases. Across the three buildings,
chann f s achieves median accuracy between 1.94 and 3.02 m, which outperforms 802.11 in
the University building and the House.

The strong performance of chann demonstrates the advantage of wide fingerprints,
i.e., including measurements from a large number of channels rather than just the
6-strongest cells. Moreover, the significant accuracy improvement of chann f s over
chann shows that selecting a subset of highly relevant channels for fingerprint matching
has an important effect on systems performance.

Fig. 5 shows the cumulative distribution (CDF) of the localization error of all
algorithms for the University building. Most remarkable is the closeness with which
chann f s approximates 802.11, and the large difference in performance between
chann f s and cell.
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Fig. 5. CDF of the localization error in the University building.

5.4. Sensitivity analysis

In this section, we analyze the best GSM performer, chann f s , in more detail.
Specifically, we test the localization accuracy of chann f s as a function of the number
of channels used and the number of measurements collected per location.

5.4.1. Number of channels
Fig. 6 plots the median localization error as a function of the number of channels used.

Increasing the number of channels results in a larger fingerprint, which allows for a better
comparison between neighboring points and therefore for improved localization accuracy.
The channels picked are sorted by popularity (i.e., the number of fingerprints on which
a specific channel appears). For example, the median localization error for 6 channels,
corresponds to an algorithm where the 6 (fixed) most popular channels are picked from
the training set. Notice that the accuracy of the algorithm that picks the 6 most popular
channels is lower than that of the cell algorithm. This is because the cell algorithm picks
the 6-strongest cells for each measurement, which may result in much larger fingerprint
vector (e.g., completely different 6 cells may be picked in two distant locations, increasing
the fingerprint vector to 12 entries).

5.4.2. Number of measurements per location
Although all the results reported so far were based on the average of 2 measurements

per location, we actually obtained 10 measurements per location for the University building
dataset. However, experiments varying the number of measurements per location between
2 and 10 showed virtually no difference in the accuracy of the algorithms. This is because
our readings are stable and therefore adding more measurements per location does not
improve localization accuracy.

6. Floor-level localization study

The floor-level localization study was conducted during the first half of 2006. The
study examined the application of GSM localization technology to the specific problem of
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Fig. 6. Localization error as a function of fingerprint size.

determining the floor on which a user is located in a tall building. As part of the study, we
implemented a system called SkyLoc that runs on commodity off-the-shelf phones. In the
rest of this section, we describe the SkyLoc system, give details about our data collection
process and then present our evaluation results.

6.1. SkyLoc

SkyLoc is a system that runs on a GSM mobile phone and determines the floor within
a building on which a user is located. The system is implemented in C# and was tested
on an AudioVox SMT 5600 phone shown in Fig. 2. The phone runs the Windows Mobile
2003 operating system. SkyLoc measures GSM environment by continuously taking GSM
measurements at a rate of 1 measurement per second. Each measurement contains signal-
strength information for 7 GSM cells and up to additional 15 GSM channels. The SkyLoc
system has two components: a data collection application called PlaceLogger and a
fingerprint matching and visualization application called PlaceLocator.

PlaceLogger supports creating a hierarchical representation of places visited by a user
and then collecting GSM measurements for these places (e.g., floors in a building). Fig. 7
shows a screen shot of the PlaceLogger interface. The top of the screen shows a tree of
the places entered by a user. In our case, the tree has a depth of 2, having the names
of buildings as root nodes and the floors as leaf nodes. PlaceLogger supports scrolling
through the nodes, adding new nodes, deleting nodes or selecting nodes. Once the user
selects a node, she can press the Enter Place button to start the data collection process.
To stop the data collection, the user presses the Exit Place button. The lower part of the
screen shows the name of the place for which measurements are being collected and the
number of measurements collected so far at this place.

PlaceLocator shows the same hierarchical view of places recorded by PlaceLogger.
However, once loaded, PlaceLocator continuously takes GSM measurements, matches
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Fig. 7. PlaceLogger.

Fig. 8. PlaceLocator.

them to the training measurements collected by PlaceLogger, and presents its floor number
prediction to the user. The results are represented in a hierarchical manner. First, the
probability of being at a leaf node is calculated and then these probabilities are propagated
up the tree to the roots. The screen shot of PlaceLocator is shown in Fig. 8. The Options
menu allows selecting various parameters for the matching algorithm.

Currently, SkyLoc is implemented as a stand alone application running on the mobile
phone. The phone calculates the current location locally and transmits it to the emergency
services as required. The advantage of this approach is that it provides a fast way to get the
system up and running today. However, we envision our system being eventually adapted,
deployed and maintained by network operators or other third parties. In this scenario, when
a user dials for emergency response, the phone takes a few measurements and transmits
them to a server, which will calculate the phone’s current location and forward this location
to the emergency services.

Our initial experience with SkyLoc is very encouraging. Collecting training data for
a new building is quite easy and not very time consuming. Moreover, as we show in
Section 6.3, the system has good accuracy.

6.2. Data collection

We collected fingerprints in the hallways of 3 buildings: (a) City Center Hotel; (b)
University Hotel; and (c) Tartu building. The buildings are shown in Fig. 9. City Center
Hotel is a 9-storey building, located in a quiet midtown residential area of Washington DC.
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(a) City Center Hotel,
Washington DC.

(b) University Hotel, Seattle,
Washington.

(c) Tartu Building, Toronto,
Ontario.

Fig. 9. The tall multi-floor buildings where the data was collected.

Table 3
Characteristics of the 3 buildings under study

City Center Hotel University Hotel Tartu

Number of floors 9 12 16
Fingerprints per floor 110 30 130
Training file size (kB) 66 33 320

University Hotel is a 12-storey building located in a midtown commercial area of Seattle.
Finally, Tartu is a 16-storey building, located in downtown Toronto. Taking fingerprints
in different cities and different urban environments allowed us to assess the robustness of
SkyLoc across environments.

Table 3 summarizes the number of fingerprints collected per floor for each of the
buildings.4 The different number of fingerprints collected per floor is the result of us
increasing the number of training and testing fingerprints collected with every new
building in the hope of achieving even better localization results. Ironically, as we show
in Section 6.3.2, the number of training fingerprints has little bearing on the localization
accuracy.

We collected fingerprints for several available network operators simultaneously (using
different phones), scanning the network every second. Once we started the data collection,
we walked with an average speed of about 2 m/s on each of the floors, collecting
fingerprints. We collected data during the day hours when people were present on
the floors. Whereas this practice may have a negative affect over SkyLoc’s measured
performance, we believe that it provides a more realistic estimate of the system’s expected
performance under real world conditions.

To investigate the effects of using different phones for training and testing and the effects
of separating the training and testing in time, we collected additional fingerprints in City

4 The buildings are sorted by height.



Author's personal copy

A. Varshavsky et al. / Pervasive and Mobile Computing 3 (2007) 698–720 713

Fig. 10. Accuracy results across all buildings.

Center Hotel two days after the initial fingerprints were collected and in University Hotel a
month after the initial fingerprints were collected. In both cases, we collected fingerprints
using different instances of the AudioVox phone.

6.3. Evaluation results

In this section, we evaluate how accurately the chann and chann f s algorithms
presented in Section 4 can differentiate between floors in tall multi-floor buildings. As
described in Section 6.2, we collected separate traces for training and testing data in each
of the 3 buildings and we used those traces as input to the algorithms. Unless otherwise
specified, the delay between collecting training and testing data on each floor was between
one to two hours.

Fig. 10 summarizes the accuracy with which the algorithms can correctly determine
the current floor, be it 1 floor off (predict the adjacent floor as the correct floor) and be it
2 floors off. The chann f s algorithm performs better than chann, achieving 51% correct
floor classifications and 96% of correct classifications within 2 floors for the City Center
Hotel. The chann algorithm trails behind with 30% correct floor classifications and 80% of
correct classifications within 2 floors for the same building. We found that the main reason
for the low performance of the chann algorithm is that, in some cases, the training and
testing fingerprints collected on the same floors contained readings from partially different
sets of base stations. Although the presence of people on the floors may have increased the
discrepancy, we believe that the main reason for the discrepancy lies in the way a mobile
phone picks cells and channels to listen to. According to the GSM specification [6], the
phone gets the list of neighboring cells to listen to from the associated cellular tower,
which is not necessarily, but often, the tower with the strongest signal strength. The way
the phone picks the associated tower depends on the strength and quality of the signal
received from neighboring cells and on additional parameters, such as the time the phone
was associated with the cell. Overall, this occasionally results in the phone picking different



Author's personal copy

714 A. Varshavsky et al. / Pervasive and Mobile Computing 3 (2007) 698–720

associated cells for the training and testing data on the same floor, which in turn results in
lower localization accuracy. Fortunately, even when the associated cells are different, some
of the neighboring cells and channels are still the same. It is these common cells that the
feature selection algorithm uses to achieve higher localization results.

One might expect to observe better localization accuracy for lower buildings because the
fewer floors a building has, the lower the probability of getting the current floor wrong. For
example, in a building with only 3 floors even an algorithm that guesses the current floor
at random will be correct roughly 33% of the time. The results support this hypothesis, but
to a small extent. For example, chann f s achieved 96% accuracy within 2 floors in City
Center Hotel, 84% in University Hotel and 82% in Tartu. Data analysis showed that this
is mainly due to the fact that when the classifier is wrong, it is usually wrong within 1 or
2 floors and therefore increasing the number of floors may not necessarily affect accuracy.
For instance, the radio environment on a 2nd floor might be similar to the one on the 3rd
or the 4th floor, but it is as drastically different from the one on the 10th floor as it is from
the one on the 20th.

6.3.1. Windowing
The previous section showed localization results for testing fingerprints classified

independently of one another. In practice, the classification decision need not necessarily
be made on a single testing fingerprint, but may be made based on a stream of testing
fingerprints.

We implemented a simple algorithm that makes the classification decision based on a
fixed-size sliding window of testing measurements. For example, if the window size is
10, the classification decision is based on the current measurement and the nine preceding
measurements. The windowing algorithm first classifies each measurement in the window
individually, and then selects the current floor as the most frequently appearing floor among
the individual classifications.

Fig. 11 shows the classification accuracy for the chann f s algorithm when the number
of testing fingerprints in the window varies from 1 to 20. The classification accuracy
increases with the window size for all buildings, reaching 98%, 90% and 82% of
correct classifications within 2 floors for the City Center Hotel, University Hotel and
Tartu building, respectively. Although in areas with large number of misclassifications,
windowing does not help much, it does help to remove outliers when the overall
performance is good, and we believe that it should be used by localization systems.

6.3.2. Sensitivity analysis
In this section, we quantify the sensitivity of the classification accuracy to different

network operators, the collection of training and testing data with different phones of
the same model, separating the training and testing in time, and the number of training
fingerprints collected per floor.

Fig. 12 shows the localization results for the University Hotel for different network
operators. The results suggest that our system works across different network providers,
as there seems to be no significant difference in terms of achievable accuracy between
different network operators. The results for City Center Hotel and Tartu buildings (not
included) show a similar trend.



Author's personal copy

A. Varshavsky et al. / Pervasive and Mobile Computing 3 (2007) 698–720 715

Fig. 11. The effect of windowing on top of the chann f s algorithm.

Fig. 12. The effect of varying network operators.

Fig. 13 shows the effect of taking the training and testing fingerprints with different
phones of the same model in the University Hotel and Tartu building. The results confirm
that taking fingerprints with a different phone does not significantly affect localization
accuracy. In the University Hotel, the percentage of correct floor classifications has reduced
from 46% to 42% and for the Tartu building it has reduced from 39% to 30%. Interestingly,
although the percentage of correct floor classifications within 2 floors has slipped 8% in
the University Hotel, the percentage actually rose 2% in the Tartu building.

Fig. 14 shows the effect of taking the training and testing fingerprints 2 days and
a month apart for the City Center Hotel and the University Hotel. The results show
that taking testing fingerprints a few days or even a month apart does not significantly
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Fig. 13. The effect on chann f s of collecting testing and training measurements with different phones.

Fig. 14. The effect on chann f s of taking the training and testing fingerprints 2 days and a month apart.

affect localization accuracy. For the City Center Hotel, the percentage of correct floor
classifications within 2 floors slipped from 96% to 93%, and the number of correct floor
classifications has reduced from 52% to 50%. For the Tartu building, the performance was
similar, with correct floor classifications slipping from 46% to 45%.

Fig. 15 shows the effect of reducing the number of training fingerprints collected
per floor for each of the 3 buildings. The figure plots the percentage of correct floor
classifications as a function of the percentage of training fingerprints used. For example,
50% of the testing points were classified correctly in the City Center Hotel with both one-
fourth and one-tenth of the originally collected training points. Surprisingly, the reduction
in accuracy among 100% of training fingerprints to only 10% is small across all buildings.
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Fig. 15. The effect of reducing the number of training fingerprints.

This is a very encouraging result because it means that only a small number of training
fingerprints need to be collected per floor, or in other words we could train any of the
buildings under study in less than 30 min and still achieve good localization results.

6.3.3. Performance evaluation
In this section, we present our performance evaluation of the SkyLoc system in terms

of memory and storage footprint and localization run times.
The amount of training data that needs to be stored on the phone depends on the

building size. The taller the building and the larger the floor size, the larger the training
file. Our current prototype stores the data in a raw text format without performing any
storage optimizations. The training file sizes are summarized in Table 3. It follows that
with the current flash card sizes of 1GB it is possible to store training files of more than
7000 buildings on a single card. Moreover, the training files may be stored in an archive
file (e.g., zip) most of the time and extracted only on demand. This optimization reduces
the storage requirement on the phone by an order of magnitude (archiving the 320 kB
training file from the Tartu building produces a 30 kB zip file). Note that instead of storing
all fingerprint maps on the phone, the phone may be able to simply download them upon
entering a building. The building may be identified by either using a GPS receiver if one is
available on the phone or through a GSM-based wide-area localization system [5].

The SkyLoc application takes about 200 kB storage space including all the necessary
libraries. When loaded it takes about 1600 kB of memory, plus any additional memory
needed for the training data. For example, the SkyLoc application and the Tartu building
training file take about 2 MB of memory out of the 32 MB available on our AudioVox SMT
5600 phone.

Next, we measured the scalability of SkyLoc in terms of the time it takes to locate a
single testing fingerprint on AudioVox’s 200 MHz Texas Instruments OMAP processor.
Determining the location of a fingerprint requires matching the fingerprint against the
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current training set. Note that in order to locate a fingerprint there is no need to match the
fingerprint to all fingerprints stored on a phone, but only to a set of relevant fingerprints.
One approach that we found to work well in practice is matching only against training
fingerprints that have at least one cell ID in common with the current testing fingerprint.

We conducted a series of experiments, each time varying the training file size and
measuring the time it takes to locate a single testing fingerprint. On an average, it takes
0.002 s to match a single testing fingerprint to a single training fingerprint or equivalently
the phone can match a testing fingerprint to 500 training fingerprints in a second. For
instance, in the University Hotel, it takes about 0.72 s to localize a fingerprint. We are
planning to develop faster fingerprint matching techniques in the future.

6.4. Discussion and recommendations

Should floor identification be added to the E911/E112 specifications, we recommend
that regulatory bodies start with the requirement of “within 2 floors of the actual floor
number 95% of the time”. We have demonstrated that the 2 floor-95% goal is achievable in
software on mobile phones and thus it represents a good starting point for any discussions
of extending regulations of the third dimension. While a lower error margin might be
necessary for some E911/E112 scenarios, we believe that regulation works best if it starts
with what is possible and then evaluates if it is sufficient.

The largest barrier to wide-scale adoption of our approach is probably the requirement
to gather training data for each building. However, we believe that that such a calibration
could be made a part of the regulated zoning procedures for large buildings and is probably
low overhead compared to the many stringent building codes and maintenance procedures
already in place for a multi-floor building like elevator maintenance and emergency exit
lighting and signage. The fact that calibration maps seem capable of being transferred
between devices without significantly impacting accuracy also supports this deployment
model.

7. Conclusions

This paper demonstrated that accurate indoor GSM-based localization is possible
thanks to the use of wide signal-strength fingerprints that include readings of up to 29
GSM channels in addition to the 6-strongest cells. We also showed that the localization
performance can be further improved by carefully selecting a subset of highly relevant
channels to be used for fingerprinting matching.

We presented our experience and evaluation results from two studies, conducted in the
first halves of 2005 and 2006. The first study examined how fingerprint width and channel
selection affect within-floor localization accuracy. We evaluated our system based on traces
collected in three buildings located in the Toronto and Seattle metropolitan areas. Our
GSM-based indoor localization system achieves a median accuracy ranging from 1.94 to
4.07 m.

The second study examined the application of GSM localization technology to the
specific problem of determining the floor in a tall building on which a user is located.
We presented evaluation results from three multi-floor buildings located in Washington
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DC, Seattle, and Toronto. Our system identified the floor correctly in up to 60% of the
cases and is within 2 floors in 98% of the cases. Our system is robust; it works for different
network operators, when the training and testing sets were collected with different phones
of the same model and up to one month apart.
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