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ABSTRACT

Indoor localization is of great importance for a range of per-
vasive applications, attracting many research efforts in the
past decades. Most radio-based solutions require a process
of site survey, in which radio signatures of an interested area
are annotated with their real recorded locations. Site survey
involves intensive costs on manpower and time, limiting the
applicable buildings of wireless localization worldwide. In
this study, we investigate novel sensors integrated in mod-
ern mobile phones and leverage user motions to construct
the radio map of a floor plan, which is previously obtained
only by site survey. On this basis, we design LiFS, an in-
door localization system based on off-the-shelf WiFi infras-
tructure and mobile phones. LiFS is deployed in an office
building covering over 1600m2, and its deployment is easy
and rapid since little human intervention is needed. In LiFS,
the calibration of fingerprints is crowdsourced and automat-
ic. Experiment results show that LiFS achieves comparable
location accuracy to previous approaches even without site
survey.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Miscel-
laneous

General Terms

Design, Experimentation, Performance

Keywords

Indoor Localization, Floor Plan, RSS Fingerprint, Smart-
phones, Site Survey

1. INTRODUCTION
The popularity of mobile and pervasive computing stimu-

lates extensive research on wireless indoor localization. Many
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solutions are introduced to provide room-level location-based
services, for example, locating a person or a printer in an of-
fice building.

The majority of previous localization approaches utilize
Received Signal Strength (RSS) as a metric for location
determinations. RSS fingerprints can be easily obtained
from most off-the-shelf wireless network equipments, such
as WiFi- or ZigBee-compatible devices. In these methods,
localization is divided into two phases: training and oper-
ating. In the first stage, traditional methods involve a site
survey process (a.k.a. calibration), in which engineers record
the RSS fingerprints (e.g., WiFi signal strengths from mul-
tiple Access Points, APs) at every location of an interest-
ed area and accordingly build a fingerprint database (a.k.a.
radio map) in which fingerprints are related with the loca-
tions where they are recorded. Next in the operating stage,
when a user sends a location query with his current RSS
fingerprint, localization algorithms retrieve the fingerprint
database and return the matched fingerprints as well as the
corresponding locations.

Although site survey is time-consuming, labor-intensive,
and vulnerable to environmental dynamics, it is inevitable
for fingerprinting-based approaches, since the fingerprint dat-
abase is constructed by locationally labeled fingerprints from
on-site records. In the end of 2011, Google released Google
Map 6.0 that provides indoor localization and navigation
available only at some selected airports and shopping malls
in the US and Japan. The enlargement of applicable areas
is strangled by pretty limited fingerprint data of building
interiors.

The development of wireless and embedded technology
has fostered the flourish of smartphone market. Nowadays
mobile phones possess powerful computation and communi-
cation capability, and are equipped with various functional
built-in sensors. Along with users round-the-clock, mobile
phones can be seen as an increasingly important information
interface between users and environments. These advances
lay solid foundations of breakthrough technology for indoor
localization.

On this basis, we reassess existing localization schemes
and explore the possibility of using previously unavailable
information. Considering user movements in a building, o-
riginally separated RSS fingerprints are geographically con-
nected by user moving paths of locations where they are
recorded, and they consequently form a high dimension fin-
gerprint space, in which the distances among fingerprints,
measured by footsteps, are preserved. In addition, we refor-
m the floor plan of a building to the stress-free floor plan,



a high dimension space in which the distance between two
locations reflects their walking distance according to the re-
al floor plan. The spatial similarity of stress-free floor plan
and fingerprint space enables fingerprints labeled with real
locations, which would be done only by site survey previ-
ously. These observations motivate us to design practical,
flexible, and rapidly deployed localization approaches with
little human costs and intervention.

In this study, we propose LiFS (Locating in Fingerprint
Space), a wireless indoor localization approach. By exploit-
ing user motions from mobile phones, we successfully remove
the site survey process of traditional approaches, while at the
same time, achieve competitive localization accuracy. The
key idea behind LiFS is that human motions can be applied
to connect previously independent radio fingerprints under
certain semantics. LiFS requires no prior knowledge of AP
locations, which is often unavailable in commercial or office
buildings where APs are installed by different organizations.
In addition, LiFS’ users are in no need of explicit participa-
tion to label measured data with corresponding locations,
even in the training stage. In all, LiFS transforms the lo-
calization problem from 2D floor plan to a high dimension
fingerprint space and introduces new prospective techniques
for automatic labeling.

To validate this design, we deploy a prototype system
and conduct extensive experiments in a middle-size academ-
ic building covering over 1600m2. Experiment results show
that LiFS achieves comparable location accuracy to previous
approaches even without site survey. The average localiza-
tion error is 5.8 meters, while the room-level localization
error is about 11%.

The rest of the paper is organized as follows. We discuss
the state-of-the-art of indoor localization technology and
multi-dimensional scaling in Section 2. Section 3 presents
the system overview of LiFS. The construction of stress-free
floor plan is introduced in Section 4. Section 5 shows how
to transform RSS fingerprints into high-dimension finger-
print space. In Section 6, we promote several techniques
to establish the relationship between stress-free floor plan
and fingerprint space. Design details and limitations are
discussed in Section 7. The prototype implementation and
experiments are discussed in Section 8. We conclude the
work in Section 9.

2. RELATED WORK

Wireless Localization

In the literature of indoor localization, many techniques
have been proposed in the past two decades. Generally, they
fall into 2 categories: fingerprinting-based and model-based.

Fingerprinting-based techniques. A large body of in-
door localization approaches adopt fingerprint matching as
the basic scheme of location determination. The main idea is
to fingerprint the surrounding signatures at every location in
the areas of interests and then build a fingerprint database.
The location is then estimated by mapping the measured
fingerprints against the database. Researchers have striven
to exploit different signatures of the existing devices or re-
duce the mapping effort. Most of these techniques utilize the
RF signals such as RADAR [2], Horus [35], improved upon
RADAR, LANDMARC [20], ActiveCampus [11], PlaceLab
[15] and OIL [23]. SurroundSense [1] performs logical loca-

tion estimation based on ambience features including sound,
light, color, WiFi, etc. In two recent works, FM radio [5]
and Channel Frequency Response [27] are explored to use as
fingerprints. All these approaches require site survey over
areas of interests to build a fingerprint database. The con-
siderable manual cost and efforts, in addition to the inflex-
ibility to environment dynamics are the main drawbacks of
fingerprinting-based methods.

Model-based techniques. These schemes calculate lo-
cations based on geometrical models rather than search for
best-fit signatures from pre-labeled reference database. The
prevalent log-distance path loss (LDPL) model, for instance,
builds up a semi-statistical function between RSS values and
RF propagation distances [16, 6]. These approaches trade
the measurement efforts at the cost of decreasing localization
accuracy. [31] investigates several approaches based on AP
locations and radio propagation models, and reports aver-
age error greater than 5 meters. Apart from power-distance
mapping, Time of Arrival (ToA) [36], Time Difference of
Arrival (TDoA) [24], and Angle of Arrival (AoA) [21, 37]
have brought a host of alternative perspectives to character-
ize geometric relationship between signal transmitters and
receivers.

Simultaneous Localization and Mapping (SLAM)

While the robotics and computer vision communities have
developed techniques for jointly estimating the locations of
a robot and a map of an environment, the nature of wireless
signal strength prohibits the use of standard SLAM tech-
niques [30, 19]. These techniques typically depend on two
facts: 1) the ability to sense and match discrete entities such
as landmarks or obstacles detected by sonar or laser range-
finders; 2) precisely controlled movement of robots to depict
discovered environments. Both of them are unreasonable for
smartphone-based localization [32].

WiFi-SLAM [9] uses the Gaussian process latent variable
models to relate RSS fingerprints and models human move-
ments (displacement, direction, etc.) as hidden variables.
When a small portion of RSS measurements are tagged with
the real coordinates, semi-supervised localization [25] es-
timate the others’ locations according to RSS dissimilari-
ty. GraphSLAM [12] further improves WiFi-SLAM regard-
ing computing efficiency and relying assumptions. Similar
in leveraging human mobility, Zee [26] devises techniques
for accurate dead-reckoning using smartphones and places
recorded user paths into an indoor map according to the
constrains imposed by the map (e.g., that a user cannot
walk through a wall or other barrier marked on the map),
such that wireless fingerprints are related to locations.

Different from previous SLAM solutions and [26], LiFS on-
ly measures walking steps and is free of using dead-reckoning
based on noisy inertial sensors of smartphones. In the pro-
posed solution, neither digital compass nor gyroscope is in-
volved. Instead, we use accelerometer (as pedometer) to
record only the number of footsteps, which can be accu-
rately measured by nowadays smartphones, with respect to
the displacement and directions of users’ movements. Loca-
tions are computed through the deterministic MDS method.
The mapping of discovered world and the ground-truth one
has not been specifically discussed in SLAM and the solu-
tion relies on global references. In contrast, LiFS exploits
the geometry of fingerprint space to construct fingerprints
databases.
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Multidimensional Scaling

Multidimensional scaling (MDS) [4] is a set of related s-
tatistical techniques often used in information visualization
for exploring similarities or dissimilarities in data. An MD-
S algorithm starts with a matrix of item-item dissimilari-
ties, then assigns a location to each item in d-dimensional
space, where d is specified a priori. For sufficiently small d
(d = 2, 3), the resulting locations may be displayed in a 2D
graph or a 3D structure.

Seeing inter-device distances as a metric of dissimilarity,
many approaches of network localization adopt MDS as a
tool for calculating the locations of wireless devices [28, 8].
For example, in wireless sensor networks, sensor nodes are
capable of measuring the distances to neighboring nodes by
RSS, ToA, TDoA, etc. MDS is used to assign a coordinate
to each node such that the measured inter-node distances
are as much preserved as possible. Some researchers pro-
pose MDS to figure out WiFi AP locations [14]. In their
approach, AP-AP distances are determined by a radio at-
tenuation model. Although being similar to our solution in
terms of the usage of MDS, it is neither for user localization
nor fingerprinting-based.

3. OVERVIEW

3.1 Data Collection
User participation is essential in the initial period at the

online stage. Untrained users walk in a building following
daily activities. Mobile phones, carried by users, collect
WiFi RSS characteristics (a.k.a. RSS fingerprints or signa-
tures) at various locations along user movement paths, and
the walking distances are also recorded. Walking distances
are measured as footsteps from the readings of integrated
accelerometers in mobile phones. Similarly, accelerometers
also infer the starting and finishing moments of user paths.
LiFS harnesses the walking distance between two endpoints
(denoted by corresponding fingerprints) along a user path to
establish the geographical relationship among fingerprints.
During data collection, users can be even unaware of the
collection task in which they are actually involved.

3.2 System Architecture
In this subsection, we present the system architecture

of LiFS, as shown in Figure 1. The working process of
LiFS consists of two phases: training and operating. The
major output of training phase is a fingerprint database in
which an RSS fingerprint and its corresponding location are
associated. The fingerprint database is further used in op-
erating phase to process location requests. We describe the
training and operating phases in detail next.

Training Phase. The core task of training phase is to
build the fingerprint database. We divide this task into 3
steps: (1) transforming floor plan to stress-free floor plan;
(2) creating fingerprint space; (3) mapping fingerprints to
real locations.

A floor plan shows a view of a building structure from
above, including the relationships between rooms, spaces,
and other physical features. The geographical distance be-
tween two locations in a floor plan is not necessary to be
the walking distance between them due to the block of wall-
s and other obstacles. Hence, we propose stress-free floor
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Figure 1: System architecture.
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Figure 2: Floor plan of the experiment field.

plan, which puts real locations in a floor plan into a high
dimension space by MDS [4], such that the geometrical dis-
tances between the points in the high dimension space reflect
their real walking distances. Through stress-free floor plan,
the walking distances collected by users can be accurately
and carefully utilized.

Fingerprint space is a unique component in LiFS, differ-
ent from traditional approaches. According to the inter-
fingerprint distances, MDS is used to create a high dimen-
sion space, in which fingerprints are represented by points,
and their mutual distances are preserved. In traditional ap-
proaches, fingerprints are geographically unrelated, losing
the possibility of building fingerprint space.

In fingerprint database, fingerprints are associated with
their collecting locations (i.e., fingerprints are labeled with
locations). Such associations are achieved by mapping fin-
gerprint space (fingerprints) to stress-free floor plan (loca-
tions) . As shown in Figure 1, fingerprint database, as the
core component, connects training and operating phase.

Operating Phase. When a location query comes, usu-
ally an RSS fingerprint sent by a user, LiFS takes it as a
keyword and searches the fingerprint database. The best
matched item is viewed as the location estimation and sent
back to users. To find the best matches, many searching
algorithms can be used. In this design, we adopt a simple
one, the nearest neighbor algorithm. More specifically, we
assume that a fingerprint f is collected at the same location
as f ′, if f ′ is the most similar to f in the fingerprint database.

4. STRESS-FREE FLOOR PLAN
In architecture and building engineering, a floor plan is a

diagram, showing a view from above of the relationships be-
tween rooms, spaces, and other physical features at one level
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Figure 3: Floor plan with sample locations. Figure 4: Moving paths.

of a structure. Dimensions are usually drawn between the
walls to specify room size and wall length. The floor plan of
our experiment field is shown in Figure 2. The geographical
distance between two locations in a floor plan does not nec-
essarily equal to the walking distance between them due to
the block of walls and other obstacles. Hence, ground-truth
floor plans come into conflict with the measured distances
during data collection. Figure 2 also illustrates the distance
mismatch phenomenon. The walking distance of two marked
locations is greatly larger than their straight-line distance s-
ince walls are not easily passed through by users.

To address the distance mismatch problem, we propose
the concept of stress-free floor plan. We sample an area
of interests at the intersecting locations of a mesh of grid-
s in a floor plan, as shown in Figure 3. The length l of
a grid can be 1-3 meters according to the general perfor-
mance of fingerprinting-based localization methods. Over-
much large or small values of l will decrease location accu-
racy or gain marginally or even scarcely. In our experiment,
we set l = 2m. By calculating the distances between all pairs
of sample locations, we have the distance matrix D = [dij ],
where dij is the walking distance between two sample lo-
cations pi and pj in the floor plan. Using D as an input,
MDS maps all pis into a d-dimension Euclidean space. In a
stress-free floor plan, the Euclidean distance between a pair
of points reflects the walking distance of their correspond-
ing locations in a real floor plan. Stress-free floor plans are
often hardly embeddable in a low dimension space due to
excessive distance constraints. For the convenience of ob-
servation, we set d = 2, 3 and the resulting stress-free floor
plans in 2D and 3D visualization are shown in Figure 5 and
6, respectively, where points with the same color represent
the sample locations from the same area.

5. FINGERPRINT SPACE
This section discusses the techniques for constructing fin-

gerprint space according to the data collected by users.

5.1 Fingerprint Collection
Suppose m APs in an area A. For each location in A, the

RSS fingerprint at this location can be denoted as a vector
f = (s1, s2, . . . , sm), where si is the RSS of the ith AP and
si = 0 if the signal of the ith AP cannot be detected. Let d′ij
denote the distance between the positions of fi and fj . We
set d′ij = +∞ temporarily if the distance record between fi
and fj is not available. We measure d′ij as follows. Suppose
at somewhere a mobile phone records fi; Along with walking
users, it moves to another position and records fj . In this
case, d′ij is the number of footsteps during the movement.

RSS fingerprints are collected during users’ routine in-
door movements. Users walk in a building and their mobile

phones record RSS fingerprints along their walking paths, as
well as the footsteps between every pairs of two consecutive
fingerprints. As illustrated in Figure 4, fingerprints (denot-
ed as squares, circles, or triangles) are recorded along three
walking paths and the line segments between fingerprints
indicate their distances in terms of footsteps.

After fingerprint collection, we have a set of fingerprints
F = {fi, i = 1 . . . n} (n is the number of records) and a
distance matrix D′ =

[

d′ij
]

, both of which are essential for
constructing the fingerprint space.

5.2 Pre-processing
As user movements are usually arbitrary and ruleless, walk-

ing paths might be intersectant and accordingly the finger-
prints might be overlapped. Hence data pre-processing is
necessary to merge similar fingerprints, which means they
are likely from the same (or very close) locations in the floor
plan.

Generally, for two fingerprints fi = (s1, s2, . . . , sm) and
fj = (t1, t2, . . . , tm), define RSS difference (dissimilarity) δ

between fi, fj as follows:

δij =‖ fi − fj ‖1=

m
∑

k=1

|sk − tk|

For fi and fj , if their dissimilarity δij is smaller than a pre-
defined threshold ǫ, then they are merged as a same point in
the fingerprint space to be generated. Otherwise, if δij > ǫ,
fi and fj are treated as two different points. The determina-
tion of epsilon is based on the fingerprint samples collected
at a given location (when phones are not moving). Several
other works like [34, 32] adopt the similar solution as well.

Moreover, the raw data from accelerometer readings are
pre-processed to obtain walking distance measurements. The-
oretically the distance traveled can be calculated by integrat-
ing acceleration twice with respect to time. However due to
the presence of noise in accelerometer readings, error accu-
mulates rapidly and can reach up to 100 meters after one
minute of operation [33].

To avoid accumulation of measurement errors, we adopt
the individual step counts as the metric of walking distance
instead, like a pedometer. Figure 7 shows the magnitude
of acceleration during walking for ten steps. We employ a
local variance threshold method [13] to detect the number
of steps. The method is based on filtering the magnitude
of acceleration followed by applying a threshold on the vari-
ance of acceleration over a sliding window. Step counting
is accurate and in our experiments the measured steps are
almost exactly what they actually are.

We understand that stride lengths vary from person to
person. Previous solutions like [32] assume a fixed stride
length of a person according to his weight and height, and



-20 -10 0 10 20 30
-15

-10

-5

0

5

10

15
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Figure 6: 3D stress-free floor plan.

achieve accurate results. In our solution, the variation of
stride length can be efficiently alleviated through the fact
that MDS tolerates measurement errors gracefully, due to
its over-determined nature [28, 29].

5.3 Fingerprint Space Construction
To construct an accurate and informative fingerprint s-

pace, adequate fingerprints and their distance measurements
are required. In our experiments, the operating phase of
LiFS starts when the number of collected fingerprints reach-
es 10 times of the number of the sample locations in the
construction of stress-free floor plans. Another possible way
is to assign the first several days of LiFS’ pilot run for train-
ing because routine activities exhibit certain repetitiveness
day after day. Actually the running of operating phase does
not mean the end of data collection. It is reasonable to se-
lect a less conservative starting point and refine the current
fingerprint database uninterruptedly in operating phase ac-
cording to newly coming data.

If no user path passes through a pair of fingerprints fi and
fj , the direct measurement of the distance d′ij is unavailable.
However, all user paths constitute a network of fingerprints
in which fi and fj are connected via more than one user
paths. Hence, the value of d′ij can be approximated as the
length of the shortest path between fi and fj by passing
several user path segments. Note that some measured values
of d′ij can also be updated under this intuition. For example,
if d′ij > d′ik+d′kj for some k, then d′ij is updated to d′ik+d′kj .
Such updates can eliminate the negative distance estimates
caused by the circuitous paths or the adverse (to LiFS) user
habit of pacing back and forth.

We adopt the Floyd-Warshall algorithm [10] to compute
all-pair shortest paths of fingerprints. It takes O(n3) run-
ning time and n is the number of fingerprints. For conve-
nience, we still use D′ to denote the distance matrix after
the above-mentioned refinements on the original D′. So far
D′ is dense and meaningful.

Similar to constructing stress-free floor plan, using D′ as
an input, MDS maps all fi into a d-dimension Euclidean
space. Figure 8 and 9 demonstrate the 2D and 3D visual-
ization of fingerprints, respectively.
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Figure 7: The acceleration pattern for 10 steps.

6. MAPPING
If all fingerprints correspond with the sample locations in

the stress-free floor plan, we are able to label each finger-
print with a real location. Such correspondence comes from
the spatial similarity between stress-free floor plan and fin-
gerprint space.

6.1 Feature Extraction

6.1.1 Corridor Recognition

Generally speaking, corridors in a building connect all oth-
er office rooms like hubs in a network. When people walk
from one room to another, they need to pass through cor-
ridors. Such characteristics in real life are reflected in both
stress-free floor plan and fingerprint space, as shown in Fig-
ure 5, 6, 8, and 9. We observe that fingerprints collected
at corridors reside in core positions in fingerprint space. In
terms of graph centrality [22], these fingerprints have a rel-
atively large centrality values.

In graph theory, vertex centrality can be valued by degree,
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Figure 9: 3D fingerprint space.

betweenness, closeness, etc [22]. In our context, we adopt
the betweenness centrality to identify corridor fingerprints.
Conceptually, vertices that have a high probability to occur
on a randomly chosen shortest path between two randomly
chosen nodes have a high betweenness. Formally, in a graph
G = (V,E) of vertices V and edges E, the betweenness
centrality of a vertex v ∈ V is defined as

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst

,

where σst is the number of shortest paths from s to t, and
σst(v) is the number of shortest paths from s to t that pass
through a vertex v.

Our solution first recognizes the fingerprints collected in
corridors in the fingerprint space. According to the distances
among fingerprints, we build the Minimum Spanning Tree
(MST) [7] T that connects all fingerprints in F , as illus-
trated in Figure 10. In addition, we compute the vertex
betweenness for all vertices (fingerprints) in T and then dis-
tinguish fingerprints from corridors and other areas based on
a betweenness watershed. The betweenness watershed value
is determined by two parameters: 1) the area ratio c of cor-
ridors to entire floor plan (i.e., c = size(corridor)/size(all)),
which is available when generating the stress-free floor plan;
and 2) the large gap of betweenness values of fingerprints.
In our experiment, the resulting cumulative distribution of
betweenness is shown in Figure 11. Roughly, nearly 8.6%
have their betweenness larger than 8,200; while others all
less than 7,000 (shown in Figure 11). Obviously two groups
of fingerprints are formed and we regard the one of larger
betweenness as coming from corridors considering the struc-
ture shown in Figure 2. Let Fc denote the set of fingerprints
that are estimated collected from corridors.

6.1.2 Room Recognition

Removing Fc from the fingerprint space, we observe from
both Figure 8 and 9 that the remaining fingerprints form
several clusters that are apparently spatially separated. To
gather the fingerprints that are sufficiently close to each oth-
er, the k-means algorithm [17] (a classic clustering method)
is chosen due to its computational efficiency. Thus all fin-

gerprints in F −Fc are classified into k clusters (denoted by
FRi

, i = 1, 2, . . . , k) and in the k-means algorithm k is set
to be the number of rooms in real floor plan. After cluster-
ing, all fingerprints of a same FRi

are considered from the
same real rooms, though we cannot tell which specific room
they are from. The next subsection focuses on this mapping
problem.

6.1.3 Reference Point Mapping

After characterizing corridors and rooms, we are able to
establish relationships between stress-free floor plan and fin-
gerprint space, and we think doors are the keys. Particu-
larly, we are intended to identify the fingerprints that are
collected near doors. We define f̂i and f̂ ′

i as follows:

(f̂i, f̂
′
i) = argmin

f∈FRi
,f ′∈Fc

‖ f − f
′ ‖,

where ‖ · ‖ denotes the 2-Norm in the fingerprint space.

Specifically, f̂i and f̂ ′
i locate as close as possible to a door

in the floor plan but in opposite sides (f̂i inside the room

and f̂ ′
i outside the room). Let FD = {f̂ ′

i , i = 1, 2, . . . , k}
denote the set of key corresponding points. Actually, the
fingerprints in FD can be organized in a chain in the MST
T , as shown in Figure 10. So we present FD in a vector form
as FD = (f1, f2, . . . , fk).

While in the stress-free floor plan, let PD = (p1, p2, . . . ,
pk) denote the set of sample locations in the corridor that
are the closest to every door. The order of sample locations
in PD are in accord with their appearance from one side to
the other side along the corridor. There are two possible
ways (σ1, σ2 : FD → PD) mapping FD to PD:

σ1 : fi 7→ pi;

σ2 : fi 7→ pk−i+1.

In fact only one of σ1 and σ2 is the ground-truth. We use
the distance constraints in both stress-free floor plan and
fingerprint space to eliminate the ambiguity. We define l =
(l1, l2, . . . , lk−1) and li =‖ pi+1−pi ‖. Similarly, l′ is defined
as l′ = (l′1, l

′
2, . . . , l

′
k−1) and l′i =‖ fi+1−fi ‖. The values of li

and l′i can be determined according to the distance matrix



Figure 10: MST in 3D fingerprint space.
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Figure 11: Betweenness distribution.

D and D′, respectively. The cosine similarity of l and l′,
denoted by s1, is calculated by

l · l′

‖ l ‖‖ l′ ‖
.

While the similarity of l and the reverse of l′, denoted by
s2, is also calculated. If s1 ≥ s2, we adopt σ1, otherwise
σ2. Without loss of generality, σ1 is chosen in the following
discussion.

Up to now, a group of fingerprints (FD) are labeled with
real locations. The relationship between FD and PD can be
further used to map other fingerprints to real locations.

6.2 Space Transformation
In this section, we discuss how to map fingerprints (finger-

print space) to locations (stress-free floor plan). We initially
try floor-level transformation and then turn to room-level
transformation for better accuracy.

6.2.1 Floor-level Transformation

From the visualization of the stress-free floor plan and
the fingerprint space, we observe that they are structurally
similar but under trivial variations, including translation,
rotation, or reflection. We use a transform matrix to solve
such trivial variations.

Suppose a fingerprint fi ∈ FD has its coordinate in the
form of xi = [x1

i x2
i . . . xd

i ]
T, where d is the dimension of the

fingerprint space. And its corresponding location pi ∈ PD

has a coordinate yi = [y1
i y2

i . . . yd
i ]

T in the stress-free floor
plan. Let A denote the d × d transformation matrix and
B = [b1 b2 . . . bd]

T. We have k = |FD| following equations

yi = Axi +B.

We re-write the k equations as

Hiz = Gi,

where Hi = [xT
i 1], z = [A B]T, and Gi = yT

i . Combining k

equations as a matrix equation, we have

Hz = G,

where Hi and Gi are the ith row of H and G, respectively.
The least square estimation [3] of above k equations gives

z̄ = (HT
H)−1

H
T
G,

which minimizes ‖ G−Hz ‖.
So far, the transformation matrices A and B can be de-

termined by z̄; thus we are able to map any fingerprint to
the stress-free floor plan with a fixed location. For a finger-
print f with the coordinate x = [x1 x2 . . . xd]T, the sample
location that is closest to Ax + B is estimated as the real
location of f .

6.2.2 Room-level Transformation

From the experiment results, the unsatisfactory perfor-
mance of floor-level transformation motivated us to design
a fine-grained mapping solution. As previously mentioned,
doors and fingerprints near doors are related, which further
indicates that the rooms and the fingerprints from corre-
sponding rooms are also related since a door belongs to only
one room (i.e., the mapping from doors to rooms is injec-
tive). This fact enables room-level mapping instead of floor-
level mapping.

Using MDS, the fingerprints from one room are trans-
formed to d-dimension space. In the same way, the sample
locations from the corresponding room are also mapped to
d-dimension stress-free floor plan. Using doors and room
corners as reference points, the fingerprints and sample loca-
tions are linked determinately by the transformation matrix
above discussed. We perform the above step one room by
one room and finally achieve a full mapping for all finger-
prints after multiple steps of room-level transformation.

7. DISCUSSION

7.1 Global Reference Point
Global reference points include the last reported GPS lo-

cation [6], AP’s location [18], similar surrounding sound sig-
nature [1], feature-distinct public area, etc. Though we do
not use global reference point in this design, they can be
integrated into LiFS, resulting in a more robust mapping
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solution, while LiFS still works in case of deficient global
information. Global reference points are also the key in case
of symmetric floor plans or multi-floor buildings.

7.2 Building Type
Our experiment field is one floor of an academic building.

The corridor in the middle connects all other office rooms
that lie on both sides of the corridor. According to such
layout, we try to distinguish corridors and rooms based on
user traces. This solution fits a majority of office buildings
but may fail in large open environments, such as hall, atri-
um, gymnasium, or museum, in which users’ movements are
difficult to characterize. We envision that the recognition of
different functions of areas helps to regionalize spaces and
model users’ movements, as our future work.

8. EXPERIMENTS

8.1 Experiment Design
We develop the prototype of LiFS on the increasingly pop-

ular Android OS and on two Google Nexus S phones which
support WiFi and accelerometer sensors. We conduct the
experiment on one floor of a typical office building covering
1600m2, with the length of 70m and width of 23m. As shown
in Figure 2, the building contains 16 office rooms, of which
5 are large rooms of 142m2, 7 are small ones with different
sizes and the other 4 are inaccessible. Totally m = 26 APs
are installed, of which 15 are with known locations and are
denoted in Figure 2.

We sample the experiment floor plan approximately every
4m2 (2m×2m grid) and obtain 292 sample locations over al-
l accessible areas. Afterwards, we conduct MDS and the
results in 2D and 3D are depicted in Figure 5 and 6, respec-
tively.

The experiment lasts five hours by 4 volunteers. Each
volunteer holds a mobile phone in hand and walk through
areas of interests. LiFS records the accelerometer readings
to count walking distances and picks up RSS values along
the paths. Fingerprints are recorded every 4∼5 steps dur-
ing moving, which corresponds 2∼3m under normal walk-

ing styles. Accelerometers work in two different frequencies:
when detecting movements, they record sensory data with
short intervals; otherwise a relatively long interval is adopt-
ed. WiFi is only scanned when the users are detected to be
moving.

Totally 600 user traces along with 16,498 fingerprint record-
s are collected. These traces cover most of the areas of the
experimental field. The small and large rooms are covered
by at least 5 and 10 paths, respectively. In addition, the
corridor is covered by more than 500 paths. Different paths
vary not only in the areas they covered but also in lengths.
We select a half of these data for training and use the rest
in operating phase.

8.2 Performance Evaluation

8.2.1 Fingerprint Space Generation

Before generating the fingerprint space, we obtain finger-
print points (i.e., points in the fingerprint space) and their
pairwise distances from raw sensory data. Each point has
a set of fingerprints. Fingerprints are distinguished by their
RSS dissimilarities. Fingerprints with similar RSS features
are attached to the same fingerprint points while fingerprints
with large dissimilarities are sticked to different points. As
user traces may be overlapped in the floor plan, fingerprints
collected from different traces may be attached to the same
point in the fingerprint space. In addition, fingerprints from
a same sample location may be bounded to different points
due to the RSS fluctuation. Hence, the threshold value of ǫ
can affect the fingerprint space generation a lot.

To obtain an appropriate ǫ for generating fingerprint s-
pace, we try different values of ǫ from 10 to 100 stage-by-
stage with a step length of 5. Location error and room error
defined as follows are used to examine the effects of ǫ.

Location Error = ||L(f) − L
′(f)||,

Room Error =
1

N

∑

f∈F

I(R(f) 6= R
′(f)),

where f is a fingerprint, L(f) (R(f)) and L′(f) (R′(f)) rep-
resent the ground truth location (room) in floor plan and
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Figure 17: Floor plan corridor vs. Recognized corri-

dor. Points marked with ’X’ are reference points.

in fingerprint space respectively, N is the number of finger-
prints, F is the set of fingerprints, and I is an indicative
function. For each fingerprint, its ground truth location
(room) in fingerprint space is determined as the labeled-
location of those predominant fingerprints with the same
location (room) label.

We plot the cumulative distribution (CDF) of location er-
ror in Figure 12. The impact of ǫ on room error and the
number of points are illustrated in Figure 13. As from the
results, location error and room error both increase when
ǫ changes from 10 to 100, while the number of points de-
creases from about 1,600 to 1. Too small or large values of ǫ
deteriorate the performance as fingerprints will be wrongly
clustered. We choose ǫ = 30 for further experiments, since
80% of fingerprints are accurate when ǫ = 30.

To obtain walking distances of fingerprints, we first e-
valuate the step counts estimation using the local variance
threshold method by accelerometers. Paths with different
lengths (from 5 to 200 footsteps) are designed for testing.
Experiment results show an error rate of 2% in the number
of detected steps. Although different users have various step
sizes which results in different distances of the same number
of steps, it will be shown later that MDS has outstanding

performance in tolerance to measurement errors. The ac-
cumulative error of long paths brings about unobvious per-
formance drop as only path segments (inter-fingerprint dis-
tances) are used by MDS and the distance of far-away points
are calculated by aggregating many paths.

Totally, 795 points are generated for fingerprint space
when ǫ = 30. First we assign the pairwise distances of these
points with their measured walking distances and thus we
get a connected network. By performing the Floyd-Warshall
algorithm on the network, we obtain all the pairwise dis-
tances of 795 points. Finally, we conduct 2D and 3D MDS
on these points and the results are shown in Figure 8 and 9,
where each color denotes one room (or the corridor) in the
floor plan. As seen from the figures, real floor plan struc-
ture is well reflected by MDS under constraints of walking
distances.

8.2.2 Mapping Performance

We build the MST of the fingerprint points (Figure 10) to
calculate the betweenness centrality of each point. We sort
all points by betweenness centrality in Figure 11 and select
those points with higher betweenness than the watershed
value (8,000 in our experiments). All selected points are
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Figure 18: Fingerprints clusters vs. floor plan rooms.

estimated from the corridor recognition. As illustrated in
Figure 14, most of the candidate corridor points are correctly
extracted. However, some room points are also mixed among
them and on the other hand, some true corridor fingerprints
are not included. Hence, we refine the corridor recognition
by iteratively performing MST and sifting low betweenness
points until the MST of the remaining points form a single
line, i.e., each point has at most one parent and one child
in the MST. The final corridor points are depicted in Figure
15.

The rest of fingerprint points, most of which are actual-
ly collected from rooms, are then clustered into 12 clusters
(equal to the room number) using k-Means. The clustering
results are shown in Figure 16, where each different color in-
dicates a cluster. The figure shows that most rooms can be
recognized correctly while only a small portion of corridor
points are mixed.

For each cluster, we identify a point in the corridors that
has the shortest distance to all the points in a cluster as
the reference point. The 12 reference points for 12 clusters
are shown in Figure 17. Some clusters may take the same
point as its reference point, which is caused by the clustering
errors. The reference points in the floor plan which link
rooms to corridors are also presented in Figure 17. The
reference point sequences of floor plan and fingerprint space
are l = {2.37, 3.36, 9.40, 1.18, 1.16, 8.07, 1.17, 3.82, 2.51,
2.55, 1.25} and l′={0.33, 2.12, 12.98, 1,31, 1,31, 10.17, 1.24,
10.17, 1.24, 5.99, 3.69, 1.18, 0} respectively. Let l′′ be the
reverse of l′. The cosine similarities of l and l′ and l and l′′

are s1 = 0.97 and s2 = 0.67, respectively. Since s1 > s2, l
′

is adopted.
Up to now, the corresponding relationship of clusters to

rooms is achieved. We then conduct the room-level trans-
formation below. To understand the cluster-room mapping,
we plot the 2D MDS results of each cluster and each room
in Figure 18. The mapping relations of 12 clusters and their
corresponding rooms are also illustrated in Figure 18. As
seen from Figure 18, the stress-free rooms are the same as
in the floor plan while the 2D fingerprint points especially
those from small rooms are a bit rambling. This is because
the points are from multiple rooms and the measured dis-
tances are of errors.

We then map the points in each cluster to sample locations
in its corresponding room by choosing the nearest neighbor
for each point. As shown in Figure 19, the mapping results
are satisfactory as the location error of up to 96% points is
lower than 4 meters. In addition, the average mapping error
of is only 1.33 meters.

8.2.3 Localization Error

Two metrics are designed for localization performance: lo-
cation error and room error. Location error is defined as
the Euclidean distance from the estimated location to the
ground truth one. Room error means the error rate of fin-
gerprints that are estimated to be in incorrect rooms. As the
final outputs of LiFS, the RSS noises and mapping errors
are simultaneously taken into account. We emulate 8,249
queries using real data on LiFS, and integrate all the local-
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ization results, as shown in Figure 20. Each query contains
a fingerprint and LiFS returns an estimated location. We al-
so implement RADAR [2] and compare its performance with
LiFS on the same experiment data. The average localization
error of LiFS is 5.88 meters, which is larger than RADAR
(3.42 meters). The performance of LiFS is comparable to
the state-of-the-art model-based approaches (larger than 5
meters) reported in [31] and outperforms EZ (larger than 7
meters) [6]. As shown in Figure 20, localization error of 80%
of fingerprints is under 9 meters while about 60% is under 6
meters. Some location errors are caused by the symmetric
structure of rooms, but they are relatively small and will not
contribute to room error. This accuracy is fairly reasonable,
though not much impressive, as LiFS needs no site survey
and no specific infrastructure.

We analyze the room error of all queries on LiFS and
find that the room error rate is only 10.91%. In summa-
ry, LiFS achieves acceptable localization accuracy and quite
good logical localization performance, which is competitive
with traditional approaches.

9. CONCLUSION
By utilizing the spatial relation of RSS fingerprints, we are

able to create fingerprint space in which fingerprints are dis-
tributed according to their mutual distances in real world.
On this basis, we design and implement LiFS, an indoor
localization system based on off-the-shelf WiFi infrastruc-
ture and mobile phones. The preliminary experiment re-
sults show that LiFS achieves low human cost, rapid system
deployment, and competitive location accuracy. This work
sets up a novel perspective to cut off human intervention of
indoor localization approaches. Our ongoing research focus-
es on making LiFS feasible and pervasive to various applied
environments and buildings.
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