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A Probabilistic Approach to WLAN User Location
Estimation

Teemu Roos,1,3 Petri Myllymäki,1 Henry Tirri,1 Pauli Misikangas,2 and Juha Sievänen2

We estimate the location of a WLAN user based on radio signal strength measurements performed
by the user’s mobile terminal. In our approach the physical properties of the signal propagation are
not taken into account directly. Instead the location estimation is regarded as a machine learning
problem in which the task is to model how the signal strengths are distributed in different geographical
areas based on a sample of measurements collected at several known locations. We present a
probabilistic framework for solving the location estimation problem. In the empirical part of the
paper we demonstrate the feasibility of this approach by reporting results of field tests in which a
probabilistic location estimation method is validated in a real-world indoor environment.
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1. INTRODUCTION user of the location-aware device. It is often useful to be
able to locate a group of other people, e.g. friends, co-

Location-aware computing is a recent interesting workers, or customers.
research area that exploits the possibilities of modern The location of a mobile terminal can be estimated
communication technology [1–4]. Location-aware de- using radio signals transmitted or received by the terminal
vices can be located or can locate themselves; by location- [5–11]. The problem has various names: location estima-
aware services we mean services based upon such loca- tion, geolocation, location identification, location deter-
tion technologies. Location-aware computing has great mination, localization, positioning, and so on. Some
potential in areas such personal security, navigation, tour-

location estimation methods, such as GPS, are based on
ism, and entertainment. The most obvious location-based

signals transmitted from satellites, whereas others rely on
service is the one answering questions like “Where am

terrestrial communication. Additional costs to the serviceI?” and “Where is the nearest shop/bus-stop/fire-exit?”.
provider are minimal in systems based on existing net-Using graphical and interactive terminals it is possible
work infrastructure. For instance, the cell-ID method, into implement an application presenting a map labeled with
which the location of the nearest base station is reporteda mark pointing “You are here”. Furthermore, location
as a location estimate, is applicable in most networks.information can also be useful for other people than the
However, the location estimation accuracy of such sys-
tems is often inadequate for many location services.
Improving the accuracy of location estimation systems1 Complex Systems Computation Group, Helsinki Institute for Informa-

tion Technology, P. O. Box 9800, 02015 HUT, Finland. http://cosco. based on the existing network infrastructure would be
hiit.fi very useful, and it is the main motivation of this work.2 Ekahau Inc., Salomonkatu 17 B, 00100 Helsinki, Finland. http://

We focus primarily on wireless local area networkswww.ekahau.com
3 Phone: 1358-9-85011286. Fax: 1358-9-6949768 (WLANs), but most of the ideas and concepts are applica-
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ble to many other networks as well, including those based domain, natural loss functions are obtained from the dis-
tance between the location estimate and the true locationon GSM/GPRS, CDMA, or UMTS standards.

The traditional, geometric approach to location esti- and its positive powers, in particular the square of the
error.mation is based on angle and distance estimates from

which a location estimate is deduced using standard Various machine learning methods can be applied
in the location estimation domain. In case-based methods,geometry. We will discuss location estimation from a

point of view that is different from the traditional one. for instance, the training examples or a part thereof are
stored in a database that is accessed during the locationOur probabilistic approach is based on an empirical model

that describes the distribution of received signal power estimation process. A prime example of a case-based
method is the nearest neighbor method, which we willat various locations. The model is used to estimate the

mobile unit’s location when the received power is discuss in Section 3.
To describe an alternative, probabilistic approach,observed. The use of probabilistic models provides a

natural way to handle uncertainty and errors in signal we will now introduce some notation. We denote random
variables and their values by the same lowercase letters.power measurements. Our approach is very similar to

that used in [8], but we address the location estimation In particular, l denotes location, and o denotes an observa-
tion variable or vector. We assume that the observationproblem in a more general setting whereas Castro et al.

focus on the problem of identifying the room where the variable is a vector of received signal strength values for
a set of access points in a communication network. Theuser is in. We also demonstrate the feasibility of our

approach in a systematic empirical case study in which training data D consists of n examples, denoted by (li oi),
for i e {1, . . . , n}, where n is the number of trainingan average location estimation accuracy of less than 2

meters was achieved. examples. With a slight abuse of notation, we use the
general notation p(?) to denote all probability distribu-The paper is organized as follows: We shall first

explain the basic principles of the probabilistic approach tions, for either discrete or continuous variables. Condi-
tional probabilities are denoted by p(?.?).in Section 2; more discussion on the probabilistic

approaches to density estimation and predictive modeling In this work we are mainly interested in the use of
probabilistic models for the location estimation problem.in general can be found in [12–15]. In Sections 3–5 we

describe some location estimation methods based on the In particular, we use models that estimate the probability
distribution of the observation variable given the valueapproach. In Section 6 we present a case study in which

the methods are applied in a real-world indoor test envi- of the location variable. In other words, for any given
location l we can obtain a distribution p(o.l ). By applica-ronment. The conclusions are summarized in Section 7.
tion of the Bayes rule, we can then obtain the so-called
posterior distribution of the location:

2. LOCATION ESTIMATION AS A MACHINE
p(l.o) 5

p(o.l ) p(l )
p(o)

5
p(o.l ) p(l )

Sl8e+ p(o.l8) p(l8)8
(1)LEARNING PROBLEM

Machine learning can be characterized as the task of where p(l ) is the prior probability of being at location l
before knowing the value of the observation variable, andautomatic learning from examples. In location estimation,

machine learning can be used in the following way. We the summation goes over the set of possible location
values, denoted by +. If the location variable is continu-first collect a set of calibration data consisting of signal

measurements collected from various locations, each ous, the sum should be replaced by the corresponding
integral. The prior distribution p(l ) gives a principledmeasurement labeled with the correct location. The cali-

bration data is used in constructing a model, which can way to incorporate background information such as per-
sonal user profiles and to implement tracking. For sim-be later used as an estimator of the unknown location

given some new signal measurements. In machine learn- plicity we use here only uniform priors that introduce no
bias toward any particular location. Because the denomi-ing terms, such a procedure is often called pattern recog-

nition or pattern classification. For a classic text on nator p(o) does not depend on the location variable l, it
can be treated as a normalizing constant whenever onlypattern recognition see [16].

In the so-called testing phase, location estimation relative probabilities or probability ratios are required.
The term p(o.l ) is called the likelihood functionperformance is measured using some loss (or error) func-

tion based on the location estimate and the true location. because it gives the probability of the observation given
the assumed source of the observation, in our case theTesting is based on a set of test data collected indepen-

dently of the calibration data. In the location estimation location. There are several implementation possibilities
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for the estimation of the likelihood function from data. 3. NEAREST NEIGHBOR METHOD
In Sections 4 and 5 we present two examples, the kernel
method and the histogram method. The prior being uni- For comparison purposes we will now present the
form, the likelihood function completely determines the so-called nearest neighbor method. It is based on some
posterior distribution of the location. Therefore it is of context-dependent distance measure that assigns a non-
utmost importance to obtain a likelihood function that negative distance value between any two observation vec-
describes the distribution of the observables at all loca- tors. We will use the simple Euclidean distance evaluated
tions as well as possible. from observation vectors, i.e., the received signal strength

In principle it is also possible to obtain a likelihood values of various access points. A special heuristic is
function without any calibration data by using knowledge required for handling the missing values associated with
of radiowave propagation and the environment. Several the cases in which the signal of some access points are
propagation prediction or cell planning tools are available not observed at all. In this work we chose to simply
for the purpose [17–20]. A few experiments of location replace the missing values with some constant smaller
estimation based on propagation prediction have been than any of the measured values. Given a set of training
presented [5,21]. The results correspond to our experi- data and a test observation vector, the location estimate
ences—which we will not elaborate in the present is obtained from the training example whose observation
paper—suggesting that the propagation prediction–based vector has the minimal distance when compared with the
methods are competitive against the traditional, geometric test observation; hence the name “nearest neighbor”.
methods (see below) but not against the machine learn- The nearest neighbor method has been used for loca-
ing approach. tion estimation [5,22,23]. Bahl et al. pre-process the train-

The posterior distribution p(l.o) can be used to ing data by combining all examples collected from the
choose an optimal estimator of the location based on same location into one training example whose observa-
whatever loss function is considered to express the desired tion vector is the mean vector of the combined vectors.
behavior. For instance, the squared error penalizes large The pre-processing enables faster location estimation and
errors more than small ones, which is often useful. If presumably reduces the effect of random fluctuations in
the squared error is used, the estimator minimizing the the training data.
expected loss is the expected value of the location variable

E [l.o] 5 o
l8e+

l8 p(l8.o) (2) 4. KERNEL METHOD

assuming that the expectation of the location variable is In the kernel method a probability mass is assigned
well defined, i.e., the location variable is numerical. to a “kernel” around each of the observations in the

The presented probabilistic approach can be con- training data. Thus the resulting density estimate for an
trasted with the more traditional, geometric approach to observation o in location l is a mixture of nl equally
location estimation used in methods such as angle-of- weighted density functions, where nl is the number of
arrival (AOA), time-of-arrival (TOA), and time-differ- training vectors in l:
ence-of-arrival (TDOA). In the geometric approach the
signal measurements are transformed into angle and dis- p(o.l ) 5

1
n1

o
li5l

K(o; oi) (3)
tance estimates, from which a location estimate is
deduced using standard geometry. To obtain the angle

where K(?; oi) denotes the kernel function. One widelyand distance estimates, one needs implicitly to have a
used kernel function is the Gaussian kernelmodel describing the dependency between the location

and the observables, which in our probabilistic setting
KGauss(o; oi) 5

1

!2ps
exp 12

(o 2 oi)2

2s 2 2 (4)corresponds to the likelihood function. One of the draw-
backs of the geometric approach is that there is no princi-
pled way to deal with the incompatibility of the angle where s is an adjustable parameter that determines the

width of the kernel. Figure 1 illustrates the effect of theand distance estimates caused by measurement errors
and noise. On the other hand, the geometric approach is parameter s.

In our location estimation domain, the density esti-usually computationally very efficient. Nevertheless, in
Section 5 we present a probabilistic location estimation mates are constructed for the received signal strength

value. As in the nearest neighbor method, we replacemethod that is sufficiently efficient for virtually all practi-
cal purposes. the missing values by a small constant. The above one-
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5. HISTOGRAM METHOD

The so called histogram method is another method
for estimating density functions. Its use for location esti-
mation has been independently suggested in [7,8,11]. The
histogram method is closely related to discretization of
continuous values to discrete ones. Let us first assume
that the observation variable is one-dimensional, and that
the minimum and maximum of the variable are known.
The method requires that we fix a set of bins, i.e., a set
of non-overlapping intervals that cover the whole range
of the variable from the minimum to the maximum. The
number of the bins, denoted by k, is an adjustable parame-
ter. The density estimate is then a piecewise constantFig. 1. Examples of kernel density estimates with Gaussian kernel and
function where the density is constant within each ofdifferent values of the kernel width s. The larger the value of s, the

smoother the estimate. The observed values are (0.1, 0.11, 0.18, 0.27, the bins.
0.3, 0.32, 0.33, 0.36, 0.6, 0.65). In addition to the number of bins, it is obviously

necessary to fix the boundary points of the bins—a choice
that greatly affects the resulting density estimate. For
simplicity, here we use equal-width bins [min 1 iw, min

dimensional formulas can be extended to multivariate
1 (i 1 1)w], 0 # i , k, where min is the minimum of

observations, e.g., received power from several access
the observation values, and w is given by (max 2 min)/k,

points, by multiplying the individual probabilities, which
where max is the maximum of the observation variable.

amounts for an assumption of independence of the obser-
Within these constraints a histogram density is uniquely

vations. Although the independence assumption can be
described by k parameters defining the bin probabilities,

criticized, it is significantly easier to estimate one-dimen-
i.e., the value of the density function within each of

sional densities than multivariate densities. Moreover,
the bins.

the independence is only assumed locally, i.e., given the
There are several alternative ways to determine good

location, not globally. In other words, the components of
bin probabilities based on a set of observed data. In the

the observation vector can, and usually do, have depend-
so-called maximum likelihood method, which is probably

encies if the value of the location variable is not fixed.
the simplest of them all, the relative frequencies of the

In the kernel method the training examples can be
bins are used as the bin probabilities. A Bayesian solution

dealt with in two ways. First, we can group the examples
(for which there are elaborate theoretical justifications,

in clusters, each taken to be collected from a single loca-
see e.g., [13]) is to add a small fraction of the total

tion. Alternatively, all the examples can be considered as
probability mass uniformly to all bins. An often reason-

being collected from different locations. In the latter case,
able fraction is given by 1/n, where n is the size of

all the received signal power density estimates are based
the observed data. Such an initial probability in all bins

on a single observation. In our experiments the latter
prevents the sometimes problematic zero probabilities

kernel method produced better results—all the results
that are possible in the maximum likelihood method.

reported in Section 6 were obtained by using this type
Figure 2 presents examples of histogram densities with

of individual kernels.
parameters chosen using the Bayesian solution.

It is interesting to note that the Euclidean nearest
Using a k bin histogram is in effect equivalent to

neighbor method is obtained as a limiting case from the
discretization into k distinct values, each of which is

kernel method with the Gaussian kernel as the kernel
assigned a point mass. The difference between values

width s approaches zero. This can be seen by observing
of density functions versus probability mass functions

that the probability p(l.o) is proportional to the likelihood
disappears as a proportionality factor. The missing values

p(o.l ), which is a Gaussian density function. Thus the
can be treated simply as the (k 1 1)th value whose proba-

probability p(l.o) is a monotonically decreasing function
bility is estimated along with the non-missing values.

of the squared distance between the observed signal
power and the kernel mean. As the inverse of the kernel

6. EMPIRICAL RESULTS
width s grows, the squared error is multiplied by a larger
value and the difference between the most probable loca- To empirically compare the location estimation

methods, the nearest neighbor, kernel, and histogramtion and the other locations grows exponentially.
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A fair comparison of the performance of different
methods is difficult because there are no standardized
test procedures in this domain. The empirical results are
affected by decisions such as whether the located terminal
is stationary or moving at a certain speed; whether the
location estimation method keeps track of the location
and exploits measurement history, not just the current
measurement; whether the true location of the terminal
is restricted to points from which calibration data is col-
lected; whether one or several measurements are used;
and many more. For instance, Bahl et al. [5] acknowledge
this problem and report several different accuracies
depending on the exact method by which the accuracy

Fig. 2. Examples of histogram density estimates with different numbers is measured. The experimental setup described below can
of bins. The observed values (0.1, 0.11, 0.18, 0.27, 0.3, 0.32, 0.33, 0.6,

be seen as a step toward defining a framework that could0.65) are the same as in Fig. 1.
be used for comparing empirical results obtained by dif-
ferent researchers.

To eliminate the effect of randomness of humanmethods were implemented as described above. We
behavior, in this study the training data was collectedemphasize that all the adjustable parameters, such as ker-
systematically by using a 2-meter grid, and at each gridnel width and number of bins, were permanently fixed
point, which we call calibration points, 20 observationsbefore running any tests or looking at the test data based
were recorded, each consisting of received signal poweronly on calibration data. Adjusting the parameters based
values for all observed base stations. This was done twice,on test data and/or test results will usually result in overly
5 days in between, resulting in a training data set con-optimistic results. The relative location estimation accura-
taining 155 calibration points, 40 observations in each.cies of the methods were assessed in the following case
The data gathering was performed by using a standardstudy. The test area consisted of a typical one-floor office
laptop computer with a WLAN card, and the process(16 3 40 meters) with concrete, wood, and glass struc-
took approximately 2 hours. The test data were collectedtures, and normal environmental conditions varying with
independently on the latter day with the same hardwarethe number of people in the office and their location, air
by using a similar 2-meter grid, but by selecting the testhumidity, temperature, etc. There were 10 access points
points to be as far as possible from the calibration points,from two different vendors. Six of them had two omnidi-
i.e., to be in the middle of the training grid. At each ofrectional antennas, and the other four had one directional

antenna (Fig. 3). the 120 test points, 20 observations were gathered.

Fig. 3. The test area used in the experiments.
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Table I Location Estimation Errors (average, 50th, 67th, and 90th per-In the test phase, at each test point the location
centiles in meters) Obtained with the Nearest Neighbor, Kernel, andproduced by the tested positioning method was first com-
Histogram Methods Using 1 or 20 Test Observations (the boldface

puted and then compared to the correct coordinates. The values indicate the best accuracy in each setting).
error was measured by using the Euclidean distance. The

1 Test Observationobservation history was taken into account so that at each
point, after having observed n test observations, the point

Method Average 50% 67% 90%
estimate was smoothed to be the average of the corres-

Nearest neighbor 3.71 3.21 4.38 7.23ponding n location estimates. More elaborate tracking
Kernel method 2.57 2.28 2.97 4.60schemes for handling the observation history are of course
Histogram method 2.76 2.32 3.11 5.37possible, but in this study this simple procedure was

adopted in order to guarantee fairness in the comparison 20 Test Observations
among the three different location estimation methods.

Method Average 50% 67% 90%In Fig. 4a we see how the average error (averaged
over all the test points) behaves as a function of the Nearest neighbor 1.67 1.60 2.04 2.80
length of the history. If the time difference between two Kernel method 1.69 1.56 2.01 3.07

Histogram method 1.56 1.45 1.81 2.76observations is, say, 100 milliseconds, we see that in 2
seconds (by using a history of 20 observations) the error
drops to approximately 1.5 meters from the initial 3–4
meters obtained without history. With a short history (fast
moving objects), the probabilistic methods were more both in the training data and in the test data. The location

accuracy was found to be surprisingly robust with respectaccurate than the nearest neighbor method, while with
the full history with 20 observations (slowly moving to the number of access points used: as an illustrative

example, consider Figs. 4b and 5b in which the averageobjects), the accuracy was approximately the same (see
also Table I). and 90% errors, respectively, are plotted as a function of

the length of the history when only three access pointsFigure 5a plots the 90 percentile error, which means
that 90% of the test cases fall under this curve. The results were used. The three access points used in the experiment

corresponding to these figures are the three access pointsare similar to the average results, which means that the
methods are reliable in the sense that the variance of the that produced the best results, but in the exhaustive tests

performed it was observed that the selection of the accesslocation accuracy is relatively small.
To see how the results change with the number of points is not critical as long as the access points are not

located very close to each other, in which case three baseaccess points used, we ran a series of experiments in
which the data from 1–9 access points were excluded stations would not be enough to cover the whole test area.

Fig. 4. Average location estimation error obtained with the nearest neighbor, kernel, and histogram methods as a function of
the length of the history, measured with 10 active access points (a) and with 3 access points (b).
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Fig. 5. The 90th percentile of the location estimation error obtained with the nearest neighbor, kernel, and histogram
methods as a function of the length of the history, measured with 10 active access points (a) and with 3 access points (b).

In summary, all three methods performed well in same time in such a way that the remaining points would
be distributed relatively evenly in the area. The resultour experiments, with the probabilistic histogram method

leading to slightly lower location error on the average, corresponds roughly to normal human behavior when
given the data gathering task.especially when the number of access points was low. To

examine the feasibility of the machine learning approach When all the 155 calibration points were used, the
area covered by a single calibration point was on thefurther, in the following we study the robustness of this

method in more detail. Namely, for practical applications average a little bit below 5 square meters. In Fig. 7 we
see how the average error behaves when a portion ofthe optimal obtainable accuracy is often not the most

important goal, but the issue is how easy it is to obtain
a practically applicable accuracy. The contour plot in Fig.
6 attempts to answer this question by demonstrating the
average error as a function of the number of access points
and the length of the history. From this plot we see,
for example, that if the full 20-observation history is
available, only 7 access points are needed for obtaining
an average accuracy below 2 meters, and if all 10 access
points are active, only one third of the history (seven
observations) are required for this level accuracy. If, on
the other hand, no history is available, with 7 access
points the error is increased almost to the 3-meter level,
and if in this case only 5 access points would be active,
the error would increase over the 3-meter level.

As mentioned earlier, the calibration points were
placed systematically on a 2-meter grid to eliminate the
effect of random human behavior in the data gathering
process. However, although this type of data collecting
process may be acceptable for scientific empirical com-
parisons, for real-world situations it may impractical. To
simulate more realistic data gathering processes we ran

Fig. 6. Average error of the histogram method using different number
a series of experiments in which a portion of calibration of access points and test observations. The curves indicate areas corres-
points were excluded in the experiments. The excluded ponding to setting combinations for which the average error remains

below 2, 3, 4 and 5 meters.calibration points were chosen randomly, but also at the
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listic methods produced slightly better results than the
nearest neighbor method.

The probabilistic methods were found to be rela-
tively robust with respect to the number of base stations
used, the amount of calibration data collected, and the
length of the history used in the location estimation. On
the other hand, it should be acknowledged that in real-
world environments there are several environmental fac-
tors that change over time, which may cause the estima-
tion accuracy to decrease so that recalibration is needed
from time to time. Nevertheless, our initial field tests
indicate that the suggested methods are relatively robust
with respect to naturally occurring fluctuations, so that
practical applications based on these location estimation
methods are quite feasible.
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