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Abstract
In this paper, we investigate the actual performance of some

of the best known localization algorithms when deployed in real–
world indoor environments. Among the plethora of possible local-
ization schemes, we focus on those based on radio signal strength
measurements only, since they do not require extra circuitry that
would result in higher cost and energy consumption. For a fair com-
parison, we have first gathered thousands of radio signal strength
measurements in two different indoor environments. To estimate
the channel model parameters and to compare the different local-
ization algorithms these data have been used.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]: Real-

time and embedded systems

General Terms
Algorithms Experimentation
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1 Introduction
Accurate and low-cost sensor localization is a critical require-

ment for the deployment of wireless sensor networks in a wide
variety of applications. The topic is very well known and it has
been widely investigated, mainly by means of simulations. Unfor-
tunately, experimental studies have revealed that most of the state
of the art localization algorithms, once deployed in real testbeds,
achieve much worse performance than what predicted by the simu-
lation analysis, in particular in indoor scenarios where the localiza-
tion problem is exacerbated by a very hostile radio propagation en-
vironment. In fact, most of the localization algorithms proposed in
literature makes use of the Received Signal Strength Indication (the
RSSI) to get an estimate of the distance between transmitter and
receiver (ranging). Unfortunately, the indoor radio channel is very
unpredictable, since reflections of the signal against walls, floor and
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ceiling may result in severe multi–path interference at the receiv-
ing antenna. In static or slowly changing environments, this results
in long–term random variations to the deterministic distance–vs–
received power law dictated by the path–loss model. This random
term will determine range estimation errors that, in turn, will lead
to large localization errors.

A possible way to dramatically improve the ranging accuracy
consists in using other physical-layer measurements than RSSI,
such as the time–of–flight of pressure waves, or ancillary radio
hardware, such as multiple and/or directional antennae. These solu-
tions however generally are more energy demanding and/or require
dedicated hardware, which results in more expensive devices. On
the contrary, pure RSSI methods can be readily deployed in every
wireless sensor network platform, since the RSSI circuitry is na-
tively supported by most of the existing transceiver chipsets, with
no extra hardware costs. Therefore, there is still a lot of interest in
improving the performance of RSSI–based localization algorithms.

In this work we tackle the problem by presenting an accurate
performance comparison among some well known RSSI–based lo-
calization algorithms in indoor environments. The aim of the study
is to gain a better understanding of the actual potentialities and lim-
its of common localization algorithms in indoor environments and
to shed light on some still open questions, such as:

1. how many anchor nodes are needed to reduce the localization
error below a certain limit?

2. is it true that complex estimation algorithms, such as Max-
imum Likelihood (ML), perform much better than simple
ones, as Min–Max?

To this end, we have realized two testbeds in two different envi-
ronments, which are representative of somehow typical indoor sce-
narios, namely an empty corridor and our research lab, i.e., a large
room, cluttered with desks, chairs, computers, hubs, cables and per-
sons engaged in their daily work life. We have then collected hun-
dreds of RSSI measurements for each sensor and gathered all the
data in two data sets, one for each environment. The data sets have
been used to characterize the radio channel, estimating the param-
eters of the radio propagation models and of the random term. The
localization algorithms have been compared over a number of dif-
ferent scenario which have been extracted from the set of collected
measures.

Although we cannot claim that this work provides the ultimate
answer to any of the above mentioned questions, in our opinion it
offers some insight to move a step forward.

The remainder of this paper is organized as follows. Section 2
gives a short survey of the related work, with particular attention
to the localization algorithms considered in our study. Section 3
presents the experimental setup used for the measurements. In Sec-
tion 4, the parameters of the indoor radio channel model are esti-
mated from the collected data. Section 5 reports the comparison
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among the experimental results obtained using the differentlocal-
ization algorithms. Finally, in Section 6 we summarize the results
and conclude the paper.

2 Related Work
As previously mentioned, the literature on the topic is huge and

an accurate survey of it is clearly out of the scope of this work.
Rather, we focus on RSSI based schemes only, dwelling upon the
algorithms that have been used in our study. A more comprehensive
overview of the topic can be found, for instance, in [1, 2].

In general, localization algorithms assume the presence in the
network of a limited number of reference nodes, referred to asbea-
conor anchornodes, which know their own spatial coordinates and
are used as reference points for localizing the other nodes, hereafter
referred to asstrayednodes. Broadly speaking, the localization al-
gorithms can be divided in two wide categories: range–based and
range–free.

Range–based algorithms make use of the RSSI to estimate the
distance between nodes. Then, different techniques, such as lat-
eration [3], triangulation [4] or statistical inference [5], are used
to estimate the position of strayed nodes with respect to the bea-
cons. Unfortunately, RSSI–based ranging is severely affected by
errors due to the unpredictable radio propagation behavior, espe-
cially in indoor environments. A poor ranging usually determines
very loose position estimates and, hence, unsatisfactory localiza-
tion performance. This limit has been remarked in [6, 7], where
the authors state that the performance cannot improve significantly
even using complex algorithms, being intrinsically limited by the
ranging errors. However, such papers do not investigate how the
ranging errors are affected by the number of anchor nodes and the
accuracy of the radio propagation model. The ranging errors due to
noisy RSSI values, however, can be mitigated through a series of
refinement phases, as in Savarese [8] and Savvides [4].

In RSSI–based range–free algorithms, localization is still per-
formed by exploiting the RSSI values that, however, are not used
to estimate the distances between strayed and beacon nodes. Good
results have been obtained by RSSI–mapping techniques, such as
RADAR [9], which require to preliminary perform an accurate
measurement campaign aimed at constructing a map of the radio
signal strength received in the area of interest. Comparing the RSSI
values received from the different beacons with the pre-built RSSI
map, a node can estimate its own position in the area. Another
family of range–free algorithms makes use of the RSSI samples to
establish order relationships between nodes. A great advantage of
this approach is its independence of the underlying channel. On
the other hand, it makes it difficult to reach a low localization error
even in the presence of a good radio channel.

In this paper we consider four algorithms, namelyMin–Max
[10, 11],Multilateration [10, 11] andMaximum Likelihood[5, 12]
estimate for the range–based category, and the ROCRSSI [13] as a
representative for the range–free algorithms.

Min–Max
Min–Max [10, 11] is a very popular localization algorithm,

whose success is mainly due to its extreme implementation simplic-
ity. Strayed nodes create an association between each beacon posi-
tion and the strength of the radio signal received from that beacon.
Inverting the nominal distance–power loss law, the strayed nodes
estimate their distance from each beacon. Then, each strayed node
draws a pair of horizontal lines and a pair of vertical lines around
each beacon, in such a way that the minimum distance between
each line and the beacon position equals the estimated node–beacon
distance. The node localizes itself in the center of the rectangular
area obtained by considering the innermost horizontal and vertical
lines, that is to say, the lowest and highest among all the horizon-
tal lines placed above and below each beacon, respectively, and the

leftmost and rightmost among the vertical lines placed on the right–
and left–hand side of each beacon. Intuitively, the smaller the in-
tersection area the better the localization, though a certain error is
unavoidable, even in the presence of perfect ranging.

Multilateration
Multilateration [10, 11] is a simple range-based, decentralized

localization algorithm, based on geometry principles. As usual,
strayed nodes collect the beacon messages and estimate their dis-
tance to each beacon. Then, any strayed node computes its own po-
sition by intersecting the circles centered on the positions occupied
by the beacons and having radius equal to the estimated distance
between the beacons and the node itself. Ideally, the intersection
should be a single point on a surface, but due to channel and en-
vironment impairments, this intersection identifies an area where
the node is likely to be found. In practice, the environment can be
represented by an occupancy grid quantized in cells of finite size (a
few centimeters). Each cell is given a weight equal to the sum of
the squared distance between the cell and each circle. The node is
then positioned in the center of the cell with lowest weight. Mul-
tilateration is slightly more complex than Min–Max but, at least
in principle, it provides better performance, implementing a more
sophisticated localization technique.

Maximum Likelihood
The Maximum Likelihood(ML) [5, 12] localization technique

is based on classical statistical inference theory. Given the vector
of RSSI valuesρ = {ρ1,ρ2, ...ρn} obtained fromn beacons with
coordinatesxB = {xB,1,xB,2, ...,xB,n} andyB = {yB,1,yB,2, ...,yB,n},
the algorithm computes the a priori probability of receivingρ for
each potential position[x,y] of the strayed node. The position that
maximizes the probability is then selected as the estimated node
position.

The Maximum Likelihood method is much more complex than
the others, but it minimizes the variance of the estimation error as
the number of observations, i.e, of reference beacons, grows to in-
finity. Unfortunately, in most realistic scenarios the number of bea-
cons is very limited, so that the ML performance can be rather un-
satisfactory.

ROCRSSI
ROCRSSI, originally proposed in [13], is a range–free algorithm

that only relies on the assumption that the received power is a de-
creasing function of the distance between transmitter and receiver.
The algorithm requires every anchor node to periodically broad-
cast a vector containing the RSSI of the packets received from the
other beacons. Strayed nodes collect these RSSI vectors, together
with the power that they receive from the anchors, storing the data
in their memory. After collecting enough measurements, a strayed
node can start the localization process. For each anchor node, say
A, the strayed nodeX compares the power it has received fromA,
ρAX, with the power that other anchor nodes, sayB andB′, has re-
ceived fromA, ρAB, ρAB′ . Based on this comparison, it determines
whether it lies inside our outsideρAB andρ′

AB, thus determining a
ring centered in A where the node is likely to be located. The pro-
cedure is repeated for every other in–range pair of anchors and the
node is finally located in the middle of the region where the largest
number of rings intersect.

3 Testbed
In this section we present the experimental scenarios. We used

IFX-Eyes sensor nodes, which have been extensively used by our
research group to test protocols and algorithms for classical Wire-
less Sensor Networks (WSN) [14, 15]. The nodes can be pro-
grammed and powered via USB, thus permitting easy interconnec-
tion with other digital devices. Each board is equipped with a radio
interface that provides 19.2 kbps transmission rate by using FSK
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Figure 1. Topology of testbeds

modulation in the 868.3 MHz band. The platform is also equipped
with light and temperature sensors. Furthermore, aReceived Signal
Strength(RSS) circuit returns a two-byte integer proportional to the
received signal strength, i.e., the so-called RSSI.

The experiments have been performed in two different testbeds,
whose topology is sketched in Fig. 1. The entire set of collected
measurements can be downloaded from the SIGNET group website
[16].

Testbed #1
The first testbed consists of a room measuring approximately

10×10 meters in which we deployed 48 EyesIFX nodes. The nodes
are placed on a grid and suspended at approximately 75 centimeters
from the ceiling. Furniture and people present in the room cause the
radio channel to be time varying and highly affected by multipath
interference.

Testbed #2
The second testbed consists of a WSN composed of a dozen of

EyesIFX sensor nodes and of a mobile node [17] that is assumed to
be always aware of its own position, being able to provide an arbi-
trary number of virtual beacons to the static nodes in its coverage
area.

4 Channel Characterization
Our first goal is to determine a suitable radio channel model for

our environment. We consider a simple path loss channel model, in
which the generici–th node, placed at distancedi from the trans-
mitter, receives a signal with powerPi (in dBm) given by:

Pi [dBm] = Ploss(di) +Ψi +αi(t) ; (1)

where

Ploss(di) = PTx +K −10η log10

[

di

d0

]

. (2)

In the previous equations,PTx is the nominal transmission power
(in dBm),K is a unitless constant that depends on the environment,
d0 is a reference distance for the antenna far field, andη is the path
loss coefficient. The termΨi denotes the random attenuation due to
shadowing, whileαi(t) accounts for the fast fading effect [18]. Typ-
ically, shadowing is almost constant over long time periods, while
fast fading shows rapid fluctuations, so that packets received in dif-
ferent time epochs likely experience equal shadowing, but almost
independent fading.

The fast fading term in (1) can be averaged out by consider-
ing multiple readings from the same static node. Thus the channel
model can be simplified as follows

Pi [dBm] ≃ PTx +K−10η log10

[

di

d0

]

+Ψi . (3)

Medium–scale shadowing effect, however, cannot be easily elimi-
nated when both transmitter and receiver are stationary. The statis-
tical distribution of this factor is generally assumed to be Gaussian,

with zero mean and varianceσ2
Ψi

whose value ranges from 4 up to
12 depending on the characteristics of the environment [18]. Fur-
thermore, the shadowing process generally presents spatial correla-
tion, although in this study we will assume the shadowing terms to
be independent and identically distributed.

We adopted a Mean Square Error criterion to determine the path
loss model parametersK, η andd0, as given in (2) for each testbed,
from the received power samples collected in each scenario. The re-
sult for scenario #1 is shown in Fig. 2, where the dashed line refers
to the empirical data, the solid line corresponds to a pure path loss
model with parametersPTx+K = −30.5 dBm,η = 1.64, d0 = 1m
and the circles represent measurement samples. As it can be ob-
served, the fitting is fairly good.

According to (3), the difference between the theoretical received
power given by the pure path loss model (2) and the measured
values is the shadowing termΨi . The quantiles of such a differ-
ence are plotted in Fig. 3 versus the quantiles of a standard Nor-
mal distribution. The QQ–plot reveals that, as expected, the error
samples distribution is fairly close to a Normal distribution, whose
standard deviation can be estimated from the empirical samples as
σΨ = 6.82 dB.

Tab. 1 reports the estimated parameters for the two scenarios.

Table 1. Channel parameters estimation on testbed #1 and #2

Scenario K +PTx η σΨ
#1 -44 dBm @1m 1.64 6.82 dB
#2 -45 dBm @1m 1.51 6.34 dB
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Figure 2. Channel parameters estimation on testbed #1
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Figure 3. QQ–plot of the residuals

It might be worth remarking that the estimation of the distance
obtained by inverting the path–loss model given by (2) is biased.
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In fact, denoting bydtrue the real distance between transmitter and
receiver, we have

d̂ = d010

(

Pt +K+ψ−Pr
10η

)

= dtrue10
ψ

10η
. (4)

Taking the expectation of̂d we get

E[d̂] = dtrueE[e
ψlog10

10η ] = dtruee
1
2

(

σψ log10
10η

)2

where the right-most term represents the bias coefficient. Since the
bias is independent of the position of the nodes and of the received
power, it can be compensated as follows [5]:

d̂′ = d̂ ·e
− 1

2

(

σψ log10
10η

)2

.

5 Results
In this section we show the experimental results obtained run-

ning the different localization algorithms presented in Sec. 2 in the
two scenarios described in Sec. 3. The aim of this analysis is to
explore how the localization precision is affected by the number of
anchor nodes and by the specific algorithm used.

Fig. 4 shows a map of the variance of the ML localization error
in an area corresponding to the Testbed #1, for a fixed deployment
of six beacons. The color of each cell corresponds to the average
value of the localization error observed in that cell. Notice that, un-
like in the other graphs reported in this paper that always refer to
empirical data, the results shown in Fig. 4 have been obtained by
simulating different realizations of the radio channel, according to
the parameters reported in Tab. 1. Observing the results reported in
the figure, we cannot conclude much about the dependence of the
localization error on the beacon positions. As expected, localization
error tends to reduce in proximity of the beacons, although this not
always true. Conversely, the cells close to the room corners experi-
ence larger localization errors, probably due to the worse multipath
effects. However, the behavior of the localization error in indoor
environments is quite unpredictable.

In Fig. 5 and Fig. 6 we report the average localization error,
defined as the distance between actual and estimated position, ob-
tained using the different algorithms in the first and the second
testbed, respectively. Notice that in Testbed #2 we have moved a
single anchor node in several different positions (each correspond-
ing to avirtual anchor), so that we cannot apply the ROCRSSI al-
gorithm that requires RSSI measurements between different pairs
of anchors. The results are represented with their statistical confi-
dence intervals, which grow when the number of anchors increases.
In fact, the statistical confidence of the results depend on the num-
ber of different scenarios that could be extracted from our testbed
deployments. Therefore, the larger the number of anchor nodes,
the lower the number of different topologies that could be extracted
and, consequently, the lower the statistical confidence of the results.

As a first thing, we can notice that the performance obtained
by the different algorithms in the two environments is qualitatively
comparable, with ML outperforming all the other algorithms when
the number of anchor nodes is equal to 7 or more. When the number
of anchor nodes is less than 7, however, the other algorithms yield
comparable or even better performance. It should be noted that the
ML algorithm has a much higher computational cost than the other
schemes here considered, and it requires a good characterization of
the radio channel, including the standard deviationσΨ of the shad-
owing term. The Min-Max scheme, on the contrary, is much less
demanding in terms of computational cost and does not require the
characterization of the shadowing term. Unfortunately, the Min-
Max performance does not improve significantly by increasing the
number of anchor nodes. In fact, the scheme presents a performance
floor that apparently depends on the considered environment.

Figure 4. Localization error map (simulated)
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Figure 5. Localization error in Testbed #1

0 5 10 15 20 25 30 35 40
1

1.5

2

2.5

3

3.5

Number of anchor nodes

A
ve

ra
ge

 L
oc

al
iz

at
io

n 
E

rr
or

 

 
ML
Multilateration
MinMax

Figure 6. Localization error in Testbed #2

The performance of the ROCRSSI and multilateration algorithms
are comparable, and generally worse than the other schemes. How-
ever, ROCRSSI offers the advantage of not requiring any radio
channel characterization. In general, for the same number of an-
chor nodes, the performance obtained in Testbed #2 is better than
that achieved in Testbed #1. This indirectly confirms that the pres-
ence of furniture and moving people exacerbates the RSSI–based
localization problems.

Finally, Fig. 7 shows the cumulative distribution function (CDF)
of the localization error obtained in Testbed #1, using the ML and
Min-Max schemes, with 5, 15, 25 and 35 beacons. It is interesting
to observe that the CDF curves of ML grow more smoothly than
those of Min-Max. In other terms, the localization errors obtained
by adopting the ML algorithm span from a few centimeters to a
few meters, whereas the Min-Max algorithm tends to concentrate
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the localization errors in a smaller region. This is probably due to
the well known tendency of Min-Max to shift position estimates
towards the center of the network [11], thus limiting the estimation
error to half of the room side.

6 Conclusions
In this paper we analyzed the behavior of various localization

algorithms, namely ML, Min-Max, Multilateration and ROCRSSI,
using real data from two different scenarios. We show that the ML
algorithm yields better performance than the others when the num-
ber of anchor nodes is relatively high. The main reason is that ML
is the only algorithm that weighs the RSSI from the anchor nodes
according with the reliability of such a reading, which decreases
with the received power. However, the performance obtained in our
testbeds are still rather unsatisfactory, with localization errors com-
parable with the room side. Multilateration is much simpler than
ML, though it achieves even worse performance. The same con-
siderations hold true for ROCRSSI, which however offers the ad-
vantage of being independent of the channel parameter estimates.
Finally, Min-Max seems to offer a good compromise, having a very
low computational cost and offering better results than multilat-
eration and ROCRSSI. However, the relatively good performance
achieved by the Min-Max algorithm is mainly due to its tendency
to localize the strayed nodes in the center of the area, thus limiting
the distance error to half of the maximum distance between the two
farthest locations in the considered area.

In conclusion, RSSI-based localization in indoor environments
presents severe limitations. An accurate radio channel model might
alleviate these problems, though the presence of moving people or
obstacles would further exacerbate the situation. Therefore, in most
common indoor scenarios, RSSI-based localization schemes do not
appear suitable to provide accurate localization (with errors limited
to few centimeters) by leveraging on only a limited number of bea-
cons deployed in the area.
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