4Sum
From LeetCode
problem description / no solution provided
Solution in Python3
Variants
Recursion
To solve \(k\)Sum problem, take one number from nums
, then solve \((k-1)\)Sum with the rest of nums
:
from bisect import bisect_left
class Solution:
def fourSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[List[int]]
"""
N = 4
quadruplets = []
if len(nums) < N:
return quadruplets
nums = sorted(nums)
quadruplet = []
# Let top[i] be the sum of largest i numbers.
top = [0]
for i in range(1, N):
top.append(top[i - 1] + nums[-i])
# Find range of the least number in curr_n (0,...,N)
# numbers that sum up to curr_target, then find range
# of 2nd least number and so on by recursion.
def sum_(curr_target, curr_n, lo=0):
if curr_n == 0:
if curr_target == 0:
quadruplets.append(quadruplet[:])
return
next_n = curr_n - 1
max_i = len(nums) - curr_n
max_i = bisect_left(
nums, curr_target // curr_n,
lo, max_i)
min_i = bisect_left(
nums, curr_target - top[next_n],
lo, max_i)
for i in range(min_i, max_i + 1):
if i == min_i or nums[i] != nums[i - 1]:
quadruplet.append(nums[i])
next_target = curr_target - nums[i]
sum_(next_target, next_n, i + 1)
quadruplet.pop()
sum_(target, N)
return quadruplets
Comments